Microclima em fragmento de Mata Atlântica no Refúgio da Vida Silvestre Mata do Junco, Capela, Sergipe

Autores

DOI:

https://doi.org/10.4336/2020.pfb.40e201901942

Palavras-chave:

Incêndio florestal, Meteorologia florestal, Prevenção de incêndio

Resumo

Equipamentos capazes de mensurar as condições meteorológicas estão cada vez mais acessíveis. No entanto, ainda são raros estudos que quantificam, com precisão, as condições microclimáticas em ecossistemas florestais. Este estudo teve por objetivo descrever e analisar as variações na temperatura do ar, umidade relativa do ar e temperatura do solo em um fragmento de Mata Atlântica localizado no Refúgio da Vida Silvestre Mata do Junco, Capela, Sergipe, Brasil. Estações meteorológicas, programadas para registrarem os dados a cada 30 min durante o período de um ano, foram instaladas em uma área florestal composta por espécies sucessionais tardias de copas densas e em uma clareira de 0,1 ha. Os resultados apontaram microclima com menor variabilidade na área florestal, enquanto na clareira as variações diárias e sazonais foram mais intensas. As temperaturas médias do ar e do solo foram, respectivamente, 0,6 ºC e 2,5 ºC superiores na clareira e a umidade relativa do ar foi 6,9% superior na área florestal. O índice de Angstron indicou maior perigo de ocorrência de incêndios florestais na clareira, em comparação à área de floresta densa.

Downloads

Não há dados estatísticos.

Biografia do Autor

Benjamin Leonardo Alves White, Instituto Federal Baiano

http://lattes.cnpq.br/4426493063884663

Maria Flaviane Almeida Silva, Universidade Federal de Sergipe

http://lattes.cnpq.br/7276739267506207

Referências

Alvalá, R. C. S. et al. Intradiurnal and seasonal variability of soil temperature, heat flux, soil moisture content, and thermal properties under forest and pasture in Rondônia. <b>Journal of Geophysical Research</b>: Atmospheres, v. 107, n. D20, p. 10-20, 2002.
Araujo, R. C. & Ponte, M. X. Efeitos do Desmatamento em larga-escala na hidrologia da Bacia do Uraim, Amazônia. <b>Revista Brasileira de Geografia Física</b>, v. 9, n. 7, p. 2390-2404, 2016. <a href="https://doi.org/10.5935/1984-2295.20160171" target="_blank"> https://doi.org/10.5935/1984-2295.20160171</a>
Baker, T. P. et al. Microclimate through space and time: microclimatic variation at the edge of regeneration forests over daily, yearly and decadal time scales. <b>Forest Ecology and Management</b>, v. 334, p. 174-184, 2014. <a href="https://doi.org/10.1016/j.foreco.2014.09.008" target="_blank"> https://doi.org/10.1016/j.foreco.2014.09.008.</a>
Biudes, M. S. et al. Mudança no microclima provocada pela conversão de uma floresta de cambará em pastagem no norte do Pantanal. <b>Revista de Ciências Agro-Ambientais</b>, v. 10, n. 1, p. 61-68, 2012.
Brooks, C. E. P. The influence of forests on rainfall and runoff. <b>Quarterly Journal</b>, v. 54, p. 1-13, 1928.
Carneiro, R. et al. Variabilidade da temperatura do solo em função da liteira em fragmento remanescente de mata atlântica. <b>Revista Brasileira de Engenharia Agrícola e Ambiental</b>, v. 18, n. 1, p. 99-108, 2014. <a href="http://dx.doi.org/10.1590/S1415-43662014000100013" target="_blank"> http://dx.doi.org/10.1590/S1415-43662014000100013.</a>
Climate-Data.Org. <b>Clima</b>: Capela (Brasil). 2018. Disponível em: <a href="<https://pt.climate-data.org/america-do-sul/brasil/sergipe/capela-42979/> link" target="_blank">&lt; https://pt.climate-data.org/america-do-sul/brasil/sergipe/capela-42979/.&gt;.</a> Acesso em: 2 out. 2018.
Fortuniak, K. et al. Urban–rural contrasts of meteorological parameters in Lodz. <b>Theoretical and Applied Climatology</b>, v. 84, n. 1-3, p. 91-101, 2006. <a href="https://doi.org/10.1007/s00704-005-0147-y " target="_blank"> https://doi.org/10.1007/s00704-005-0147-y.</a>
Geiger, R. et al. <b>The climate near the ground</b>. Berlim: Rowman & Littlefield, 2009.
Godefroid, S. et al. Spatial variability of summer microclimates and plant species response along transects within clearcuts in a beech forest. <b>Plant Ecology</b>, v. 185, n. 1, p. 107-121, 2006. <a href=" https://doi.org/10.1111/j.1654-1103.2009.01068.x"target="_blank"> https://doi.org/10.1111/j.1654-1103.2009.01068.x.</a>
Google. <b>Google Earth</b<. 2020. Disponível em: <a href=" <https://www.google.com.br/intl/pt-BR/earth/>"target="_blank"> &lt;https://www.google.com.br/intl/pt-BR/earth/&gt;</a>. Acesso em: 29 maio 2020.
Greiser, C. et al. Monthly microclimate models in a managed boreal forest landscape. <b>Agricultural and Forest Meteorology</b>, v. 250-251, p. 147-158, 2018. <a href="https://doi.org/10.1016/j.agrformet.2017.12.252" target="_blank"> https://doi.org/10.1016/j.agrformet.2017.12.252</a>.
Grimbacher, P. S. et al. Beetle species’ responses suggest that microclimate mediates fragmentation effects in tropical Australian rainforest. <b>Austral Ecology</b>, v. 31, n. 4, p. 458–470, 2006. <a href="https://doi.org/10.1111/j.1442-9993.2006.01606.x" target="_blank"> https://doi.org/10.1111/j.1442-9993.2006.01606.x.</a>
Hofmeister, J. et al. Microclimate edge effect in small fragments of temperate forests in the context of climate change. <b>Forest Ecology and Management</b>, v. 448, p. 48-56, 2019. <a href="https://doi.org/10.1016/j.foreco.2019.05.069" target="_blank"> https://doi.org/10.1016/j.foreco.2019.05.069.</a>
Holsten, A. et al. Evaluation of the performance of meteorological forest fire indices for German federal states. <b>Forest Ecology and Management</b>, v. 287, p. 123-131, 2013. <a href="https://doi.org/10.1016/j.foreco.2012.08.035" target="_blank"> https://doi.org/10.1016/j.foreco.2012.08.035.</a>
IBGE. <b>Manual técnico da vegetação brasileira</b>. 2. ed. Rio de Janeiro, 2012.
Jucker, T. et al. Canopy structure and topography jointly constrain the microclimate of human‐modified tropical landscapes. <b>Global Change Biology</b>, v. 24, n. 11, p. 5243-5258, 2018. <a href="https://doi.org/10.1111/gcb.14415" target="_blank"> https://doi.org/10.1111/gcb.14415. </a>
Kottek, M. et al. World map of the Köppen-Geiger climate classification updated. <b>Meteorologische Zeitschrift</b>, v. 15, n. 3, p. 259-263, 2006. <a href="https://doi.org/10.1127/0941-2948/2006/0130" target="_blank"> https://doi.org/10.1127/0941-2948/2006/0130.</a>
Latimer, C. E. & Zuckerberg, B. Forest fragmentation alters winter microclimates and microrefugia in human‐modified landscapes. <b>Ecography</b>, v. 40, n. 1, p. 158-70, 2017. <a href="https://doi.org/10.5061/dryad.rk398" target="_blank"> https://doi.org/10.5061/dryad.rk398.</a>
Magura, T. et al. Edge responses are different in edges under natural versus anthropogenic influence: a meta-analysis using ground beetles. <b>Ecology and Evolution</b>, v. 7, n. 3, p. 1009-1017, 2017. <a href="https://doi.org/10.1002/ece3.2722" target="_blank"> https://doi.org/10.1002/ece3.2722.</a>
Martineli, L. et al. Influência da abertura de clareiras no microclima de Floresta Semidecidual Secundária na bacia do rio Itapemirim, ES. In: ENCONTRO LATINO AMERICANO DE INICIAÇÃO CIENTÍFICA; ENCONTRO LATINO AMERICANO DE PÓS-GRADUAÇÃO, 8., 2004, São José dos Campos. <b>Anais</b>... São José dos Campos: Universidade do Vale do Paraíba, 2004. p. 572-575.
Martini, A. et al. Variação diária e estacional do microclima urbano em ruas arborizadas de Curitiba-PR. <b>Floresta e Ambiente</b>, v. 20, n. 4, p. 460-469, 2013. <a href="https://doi.org/10.4322/floram.2013.045" target="_blank"> https://doi.org/10.4322/floram.2013.045.</a>
Meineri, E. & Hylander, K. Fine-grain, large-domain climate models based on climate station and comprehensive topographic information improve microrefugia detection. <b>Ecography</b>, v. 40, n. 8, p. 1003-1013, 2016. <a href="https://doi.org/10.1111/ecog.02494" target="_blank"> https://doi.org/10.1111/ecog.02494.</a>
Mendonça, F. & Danni-Oliveira, I. M. <b>Climatologia</b>: noções básicas e climas do Brasil. São Paulo: Oficina de Texto, 2007. 206 p.
Oliveira, M. V. N. et al. Quantificação do material combustível em fragmento de Mata Atlântica no nordeste brasileiro. <b>Pesquisa Florestal Brasileira</b>, v. 38, e201701449, p. 1-8, 2018. <a href="https://doi.org/10.4336/2018.pfb.38e201701449" target="_blank"> https://doi.org/10.4336/2018.pfb.38e201701449.</a>
Pezzopane, J. E. M. et al. Caracterização da radiação solar em fragmento da Mata Atlântica. <b>Revista Brasileira de Agrometeorologia</b>, v. 13, n. 1, p. 11-19, 2005.
Pivello, V. R. The use of fire in the Cerrado and Amazonian rainforests of Brazil: past and present. <b>Fire Ecology</b>, v. 7, n. 1, p. 24-39, 2011. <a href="https://doi.org/10.4996/fireecology.0701024" target="_blank"> https://doi.org/10.4996/fireecology.0701024.</a>
Ribeiro, M. C. et al. The Brazilian Atlantic Forest: how much is left, and how is the remaining forest distributed? Implications for conservation. <b>Biological Conservation</b>, v. 142, n. 6, p. 1141-115, 2009. <a href="https://doi.org/10.1016/j.biocon.2009.02.021" target="_blank"> https://doi.org/10.1016/j.biocon.2009.02.021</a>.
Riutta, T. et al. Experimental evidence for the interacting effects of forest edge, moisture and soil macrofauna on leaf litter decomposition. <b>Soil Biology and Biochemistry</b>, v. 49, p. 124–131, 2012. <a href="https://doi.org/10.1016/j.soilbio.2012.02.028" target="_blank"> https://doi.org/10.1016/j.soilbio.2012.02.028</a>.
Rodrigues, B. D. et al. Avaliação do potencial da transposição da serapilheira e do banco de sementes do solo para restauração florestal em área degradada. <b>Revista Árvore</b>, v. 34, p. 65-73, 2010. <a href="http://dx.doi.org/10.1590/S0100-67622010000100008" target="_blank"> http://dx.doi.org/10.1590/S0100-67622010000100008</a>.
Soares, R. V. & Batista, A. C. <b>Incêndios florestais</b>: controle, efeitos e uso do fogo. Curitiba: Universidade Federal do Paraná, 2007. 264 p.
Souza, H. T. R. et al. A Relação solo e clima no monitoramento ambiental da Unidade de Conservação de Proteção Integral Refúgio de Vida Silvestre Mata do Junco (Capela-SE). <b>Revista Brasileira de Geografia Física</B>, v. 5, n. 4, p. 791-806, 2012.
Stewart, K. J. & Mallik, A. U. Bryophyte responses to microclimatic edge effects across riparian buffers. <b>Ecological Applications</b>, v. 16, n. 4, p. 1474-1486, 2006. <a href="https://doi.org/10.1890/1051-0761(2006)016[1474:BRTMEE]2.0.CO;2" target="_blank"> https://doi.org/10.1890/1051-0761(2006)016[1474:BRTMEE]2.0.CO;2</a>.
Tabarelli, M. et al. Prospects for biodiversity conservation in the Atlantic Forest: lessons from aging human-modified landscapes. <b>Biological Conservation</b>, v. 143, n. 10, p. 2328-2340, 2010. <a href="https://doi.org/10.1016/j.biocon.2010.02.005" target="_blank"> https://doi.org/10.1016/j.biocon.2010.02.005</a>.
White, B. L. A. et al. Avaliação e simulação do comportamento do fogo em diferentes fitofisionomias de uma área de Mata Atlântica do Nordeste Brasileiro. <b>Floresta</b>, v. 47, n. 3, p. 247-256, 2017. <a href="http://dx.doi.org/10.5380/rf.v47i3.50844" target="_blank"> http://dx.doi.org/10.5380/rf.v47i3.50844</a>.
White, B. L. A. et al. Building fuel models and simulating their surface fire behavior in the “Serra de Itabaiana” National Park, Sergipe, Brazil. <b>Floresta</b>, v. 43, n. 1, p. 27-38, 2013. <a href="http://dx.doi.org/10.5380/rf.v43i1.28034" target="_blank"> http://dx.doi.org/10.5380/rf.v43i1.28034</a>.
White, B. L. A. et al. Empirical models for describing fire behavior in Brazilian commercial eucalypt plantations. <b>Cerne</B>, v. 22, n. 4, p. 397-406, 2016. <a href="http://dx.doi.org/10.1590/01047760201622042227" target="_blank"> http://dx.doi.org/10.1590/01047760201622042227</a>.
White, L. A. S. et al. Evaluation of forest fire danger indexes for eucalypt plantations in Bahia, Brazil. <b>International Journal of Forestry Research</b>, v. 2015, article ID 613736, 2015. <a href="http://dx.doi.org/10.1155/2015/613736" target="_blank"> http://dx.doi.org/10.1155/2015/613736</a>.
White, B. L. A. Modelos matemáticos de previsão do teor de umidade dos materiais combustíveis florestais finos e mortos. <b>Ciência Florestal</b>, v. 28, n. 1, p. 432-445, 2018a. <a href="https://doi.org/10.5902/1980509831622" target="_blank"> https://doi.org/10.5902/1980509831622</a>.
White, B. L. A. & Ribeiro, A. S. Análise da eficiência dos índices de perigo de ocorrência de incêndios florestais para o Parque Nacional Serra de Itabaiana, Sergipe. In: Santos, A. C. et al. (Ed.).<b> Pensar a (in)sustentabilidade</B>: desafios à pesquisa. Porto Alegre: Redes, 2010.
White, B. L. A. & Silva, M. F. A. Variações microclimáticas e perigo de ocorrência de incêndios florestais em fragmento de Mata Atlântica no município de São Cristóvão, Sergipe. <b>Nativa</b>, v. 6, n. especial, p. 729-736, 2018. <a href="http://dx.doi.org/10.31413/nativa.v6i0.5798" target="_blank"> http://dx.doi.org/10.31413/nativa.v6i0.5798</a>.
White, B. L. A. Spatiotemporal variation in fire occurrence in the state of Amazonas, Brazil, between 2003 and 2016. <B>Acta Amazonica</B>, v. 48, n. 4, p. 358-367, 2018b.

Downloads

Publicado

2020-08-27

Como Citar

WHITE, B. L. A.; SILVA, M. F. A. Microclima em fragmento de Mata Atlântica no Refúgio da Vida Silvestre Mata do Junco, Capela, Sergipe. Pesquisa Florestal Brasileira, [S. l.], v. 40, 2020. DOI: 10.4336/2020.pfb.40e201901942. Disponível em: https://pfb.cnpf.embrapa.br/ojs-3.2.1-1/index.php/pfb/article/view/1942. Acesso em: 1 dez. 2020.

Edição

Seção

Artigos Científicos