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Abstract - Forests contribute substantially to maintaining the global greenhouse gas 
balance, primarily because among the five economic sectors identified by the United 
Nations Framework Convention on Climate Change, only the forestry sector has the 
potential to remove greenhouse gas emissions from the atmosphere. In this context, 
development of national forest carbon accounting systems, particularly in countries 
with tropical forests, has emerged as an international priority. Because these systems are 
often developed as components of or in parallel with national forest inventories, a brief 
review of statistical issues related to the development of forest ground sampling designs 
is provided. This overview addresses not only the primary issues of plot configurations 
and sampling designs, but also to a lesser extent the emerging roles of remote sensing and 
uncertainty assessment. Basic inventory principles are illustrated for two case studies, the 
national forest inventory of Brazil with special emphasis on the state of Santa Catarina, 
and an inventory for Tanzania.  

Considerações sobre o delineamento de inventários de florestas 
tropicais   

Resumo - As florestas podem contribuir substancialmente para a manutenção do 
equilíbrio dos gases do efeito estufa, principalmente porque, entre os cinco setores 
econômicos identificados pela Convenção Quadro das Nações Unidas sobre Mudança 
do Clima, somente o setor florestal tem potencial para eliminar as emissões de gases 
de efeito estufa da atmosfera. Neste contexto, o desenvolvimento de sistemas nacionais 
de contabilização de carbono florestal, particularmente em países com florestas 
tropicais, surgiu como uma prioridade internacional. Como esses sistemas são, muitas 
vezes, desenvolvidos como componentes ou em paralelo com os inventários florestais 
nacionais, é apresentada uma breve revisão de questões estatísticas relacionadas com o 
desenvolvimento do delineamento da amostragem de áreas florestais. Esta visão geral 
aborda não apenas as questões primárias de formatos de parcelas e desenhos amostrais, 
mas também, em menor escala, os papéis emergentes do sensoriamento remoto e da 
avaliação de incertezas. 
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Introduction

The biological richness and genetic diversity of forest 
ecosystems are widely acknowledged to be greater 
than any other terrestrial ecosystem. More than half 
the world’s life zone classes are dominated by trees 
(Holdridge, 1947, 1967), and seven of the earth’s major 
habitat types are forest types (Dinerstein et al., 1995). 
Depending on definitions, 20-30% of the earth’s surface 
is covered by forest and wooded land (FAO 2010). These 
lands provide habitat for 70% of known animal and plant 
species (Matthews et al., 2000) and contribute almost 
half of the terrestrial net primary biomass production 
(Groombridge & Jenkins, 2002). Thus, forests provide 
vital economic, social, and environmental benefits by 
supplying wood and non-wood forest products and 
services, supporting human livelihoods, supplying clean 
water, and providing habitat for half the species on the 
planet. 

The forestry sector also contributes substantially to 
the global greenhouse gas (GHG) balance. Among the 
five economic sectors identified by the United Nations 
Framework Convention on Climate Change (UNFCCC) 
as sources of anthropogenic GHG emissions, the Land 
Use, Land Use Change and Forestry (LULUCF) sector is 
the only terrestrial sector with the potential for removal 
of GHG emissions from the atmosphere. Conversely, 
the annual conversion of approximately 13 million ha of 
forest land to other land uses contributes to the net annual 
forest land decrease of 5.2 million hectares (ha) (FAO, 
2010). These forest and related land use changes have 
been estimated to account for 17% of human-induced 
carbon emissions (Intergovernmental Panel on Climate 
Change, 2007). Parties to the UNFCCC treaty recognized 
the contribution of GHG emissions from deforestation 
in developing countries to climate change and the 
need to take action to reduce such emissions. After a 
two-year process, the Conference of Parties adopted a 
decision on “Reducing Emissions from Deforestation 
and Degradation in developing countries: approaches 
to stimulate action” (REDD), Decision 2/CP.13 (United 
Nations Framework Convention on Climate Change, 
2008). The decision provides a mandate for actions by 
parties relating to reducing emissions from deforestation 
and forest degradation in developing countries. In 
particular, REDD is an effort to offer financial incentives 
for developing countries to reduce emissions from forest 
lands and to invest in low-carbon paths to sustainable 

development. REDD+ goes beyond deforestation and 
forest degradation, and includes the role of conservation, 
sustainable management of forests, and enhancement of 
forest carbon stocks. As part of REDD programs, the 
importance of national carbon accounting systems has 
been highlighted (FAO, 2008).  

As a form of carbon accounting, GHG emissions 
accounting assesses emissions from the forestry sector.  
Approaches to emissions accounting are of two types: 
the stock difference and the gain-loss approach. The 
stock-difference approach relies heavily on ground 
sampling and estimates annual emissions as the mean 
annual difference in carbon stocks between two points 
in time. The stock-difference approach is fairly easy to 
implement for countries with well-established national 
forest inventories (NFI), but may be financially and 
logistically difficult for developing tropical countries, 
particularly those with remote and inaccessible forests.  
For the latter countries, the gain-loss approach may be a 
more feasible alternative; in fact, the gain-loss approach 
is often used approach for estimating GHG emissions 
for national measurement, reporting, and verification 
(MRV) systems under the auspices of the IPCC. With 
the gain-loss method, additions to and removals from a 
carbon pool are estimated as the product of two factors, 
the area of land use change, called activity data, and the 
carbon stock changes for particular land use conversions, 
called emission factors. MRV systems may include 
a remote sensing-based component for estimating 
activity data and a ground-based inventory to obtain 
data for estimating emission factors, calibrating volume 
or biomass models, and training and/or assessing the 
accuracy of remote sensing classifiers and predictors.  

The IPCC Good Practice Guidance (Penman et 
al., 2003) is a starting point for the development and 
implementation of MRVs under the auspices of REDD. 
Additional guidance is provided by the GOFC-GOLD 
Sourcebook (Global Observation of Forest Cover and 
Land Dynamics, , 2012). The IPCC guidance focuses 
on methods for obtaining estimates of activity data 
and emissions factors. The term approaches is used 
to categorize methods for estimating activity data: 
Approach 1 estimates total area for individual land-use 
categories but does not provide detailed information 
on area changes between categories and is not spatially 
explicit other than at regional or national levels; 
Approach 2 tracks land use changes between categories 
and produces a non-spatially explicit land use change 
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matrix; and Approach 3 tracks land use changes on 
a spatial basis and generally requires sampling with 
broad geographic coverage or remote sensing-based 
mapping. The IPCC guidance also uses the term tiers 
to describe methods for estimating GHG emissions and 
removals by source: Tier 1 uses default emissions factors 
and spatially coarse estimates of land use change such 
as national or global deforestation rates; Tier 2 uses 
emissions factors and fine resolution land use change 
estimates for specific regions and specialized land-use 
categories; stock change methods can also be used; and 
Tier 3 uses fine resolution land use change estimates and 
estimates of emissions factors obtained using models 
and inventory measurement systems tailored to address 
national circumstances. An underlying assumption 
is that the highest tier possible would be used. Thus, 
because the stock change method can be readily used 
with Tier 2, it would not usually be used with Tier 1.  
Similarly, although the gain-loss method can be crudely 
implemented with Tier 1, transition to Tier 2 or 3 is 
usually the goal.

Although MRVs and NFIs share some objectives and 
features, they are not equivalent. For example, MRVs 
are typically less comprehensive than NFIs in the sense 
that they may be restricted to biomass- or carbon-
related variables and lands that are subject to human-
induced GHG emissions. In addition, by definition, a 
monitoring program emphasizes change and trends so 
that an MRV may emphasize estimation of change to a 
greater degree than do traditional NFIs. Nevertheless, 
despite their differences, the similarities between MRVs 
and NFIs are such that tropical developing countries 
often design their NFIs so that they can also serve as 
MRVs, or they design their MRVs so that they can 
easily be extended to complete NFIs. As a means of 
supporting efforts to initiate both MRVs and NFIs in 
tropical countries, a brief review of issues related to 
the development of ground sampling designs for both 
purposes simultaneously follows. In terms of context, 
multiple tiers and approaches are relevant. First, the 
stock change method, as included in Tier 2, may be 
readily implemented using an NFI. Second, estimates of 
emissions factors as required for both Tiers 2 and 3 may 
be obtained using either an NFI or an MRV. Finally, the 
ground sample data obtained for both NFIs and MRVs 
may be used for both training remote sensing-based 
classifiers and assessing the accuracy of land cover and 
land cover change classifications 

Plot configuration

Plot configuration choices include determination of 
whether single contiguous plots, subdivision of plots into 
subplots, or clusters of plots should be used. All three 
configurations require size and shape considerations. In 
addition, for all three configurations, a single sampling 
point serves as the basis for the locations of subplots within 
plots or plots within clusters. When plot configurations 
are characterized as subplots within plots, the subplots are 
usually relatively small and in close relative geographic 
proximity to the selected sampling point. In addition, the 
data for the subplots are usually aggregated and analyzed 
at the plot level rather than individually by subplot. The 
Forest Inventory and Analysis program of the U. S. Forest 
Service, which conducts the NFI of the United States of 
America (USA), uses a plot configured as a central subplot 
and three peripheral subplots at azimuths of 0o, 120o, and 
240o (McRoberts et al., 2005)   

When plot configurations are characterized as clusters 
of plots, the individual plots are often at greater distances 
from the selected sampling point. In addition, data for 
clusters of plots are typically analyzed on a plot-by-
plot basis. A large proportion of the cost of measuring 
a plot in boreal and temperate forests is the cost of 
travel to and from the plot location. Configuring plots 
in clusters contributes to minimizing these travel costs 
by establishing multiple plots in relatively close spatial 
proximity. This rationale may be even more important 
for tropical forests which are often remote and difficult to 
access (Tomppo et al., 2010a, 2011). NFIs use a variety 
of configurations for plots within clusters, although most 
select locations for plots within clusters systematically 
rather than randomly. The Finnish NFI configures 
plots as square clusters or clusters along L-shaped 
tracts (Tomppo et al., 2010b). Several factors must be 
considered when planning a cluster-based sampling 
design. If distances between pairs of plots are less than 
the range of spatial correlation, then observations will 
tend to be similar and the sampling will tend to be less 
efficient. The number of plots per cluster represents a 
compromise between the size of individual plots, the 
total area of all plots necessary to acquire adequate tree 
data, the number of clusters necessary to assure spatial 
balance, and the costs associated with travel to and from 
cluster locations.  

Plot configuration choices also include selection of a 
method for determining which individual trees should 
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be included in the sample. Variable area plots may use 
angle count (Bitterlich) sampling, which selects trees 
in proportion to their basal area and is particularly 
efficient for precisely estimating forest attributes 
related to tree size. Fixed area plots, which select all 
trees satisfying criteria such as minimum diameter and 
maximum distance, are not necessarily optimal for any 
particular forest attribute. However, they tend to be 
more compatible with auxiliary data and often represent 
a reasonable compromise among competing precision 
factors when sampling is intended to produce estimates 
of parameters for a wide variety of forest attributes.  

Selection of a configuration for a fixed area ground 
plot is based on multiple general principles, many of 
which are the same for boreal, temporal, and tropical 
inventories, although some are also different. Precise 
estimation of change is known to be more difficult than 
precise estimation of current conditions, particularly 
when the change is small or only for a small area. The 
precision of change estimates can be increased by 
remeasuring the same plots on successive occasions.  
Thus, the emphasis on estimation of change in 
MRVs argues in favor of a relatively large proportion 
of permanent plots. Although establishment and 
measurement of a temporary plot is less expensive 
than establishment and measurement of a permanent 
plot, establishment and measurement of two different 
temporary plots on two occasions is not necessarily less 
expensive than establishment and measurement of the 
same permanent plot on two occasions.

If permanent plots are used, their locations must be 
accurately documented so they can be remeasured at 
later dates. One approach is to mark plot control points, 
mask the marks from normal view, and then carefully 
document the marks relative to conspicuous locations, 
perhaps several kilometers distant. The control points are 
masked from normal view so that plot locations are not 
discovered and treated differently than the surrounding 
forest area. A sample plot will not be representative if 
it receives special treatment such as protection from 
harvesting or other disturbances. 

Circular plots are generally preferred for boreal 
and temperate inventories because they require only 
single control points, the plot centers, whereas strip 
plots require two control points at the ends of a central 
transect, and large rectangular plots require four control 
points, one at each corner. In addition, for a given plot 
area, a circular plot has a smaller perimeter, meaning 

that fewer decisions will be necessary as to whether 
particular trees are or are not on a plot. Also, coordinates 
for individual trees, which are necessary to relocate them 
at later dates, require only azimuth and distance from 
centers of circular plots. However, if visibility on a plot 
is difficult, as may be the case in dense tropical forests, 
strip or narrow rectangular plots may be preferable 
because all trees are only relatively short distances from 
the long axis of the plot. When strip or long rectangular 
plots are used, caution must be exercised to check the 
inclusion of trees. Further, rectangular plots have often 
been traditional in tropical countries (Kleinn, 2004 
Kleinn & Bhandari, 2004) and have been recommended 
by the Food and Agriculture Organization of the United 
Nations (Saket et al., 2002).

Plot  size is  subject  to multiple important 
considerations, all of which are generally related to 
logistical, cost, and precision considerations (Tomppo 
et al., 2010a, 2011). First, a plot cluster or a plot with its 
subplots should be small enough that a field crew can 
complete all measurements in a single day. As previously 
noted, a large proportion of the cost of measuring a plot 
in boreal and temporal forests is the cost of travel to 
and from the plot location, and this proportion is likely 
to be even greater for tropical forests. Thus, greater 
efficiency is achieved if field crews are not required 
to travel great distances to the same plot location on 
multiple occasions. Second, plot features such as radius 
for circular plots and lengths for strip and rectangular 
plots must be measured on a horizontal plane, not along 
irregular terrain. Apart from use of electronic distance 
measuring instruments, determination of horizontal plot 
boundaries is more difficult for larger plots, particularly 
in hilly and mountainous terrain. Thus, smaller plots 
may be preferable. Third, establishment of permanent 
rather than temporary plots to facilitate estimation of 
change usually requires either marking or determining 
coordinates for individual trees. The latter approach is 
more difficult for large plots in dense tropical forests 
because more trees will be located between the tree 
of interest and control points. An argument in favor 
of larger plots for tropical inventories is that tropical 
forests are typically more diverse than boreal and 
temperate forests, meaning that the total area of an 
inventoried plot or plot cluster should be greater to 
capture the greater diversity. However, this greater size 
could be achieved by increasing the number of small 
plots in the same plot cluster. This approach is cost 
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efficient when spatial correlations among observations 
of the variables of interest are large but decrease with 
increasing distance.  

Greater sampling efficiency is also achieved by 
using smaller nested subplots for measurement of 
smaller diameter trees. The particular sizes of the 
subplots and the diameter thresholds corresponding 
to the subplots should be based on the expected 
number of trees to be found on the subplots, the 
expected similarities of trees, and the travel time 
between plots in the same cluster or subplots of the 
same plot.  Kleinn & Bhandari (2004) recommend 
plot sizes that, on average, include 15-20 trees, 
although this average depends on small scale forest 
variability with respect to attributes such as species 
composition and size.

Sampling design

Purposive sampling
Sampling design issues pertain primarily to the 

distribution of sampling points across the landscape. Two 
general sampling approaches are common: subjective or 
purposive sampling and probability sampling. Purposive 
sampling may have varied bases including professional 
judgment to select sampling points believed to be 
representative of the entire population, quantitative 
analyses to optimize criteria such as model parameter 
estimates, or convenience factors that minimize travel 
costs. With purposive sampling, the probability of 
selection for any one potential sampling location is 
unknown with the result that statistical theory cannot 
be rigorously applied. Although purposive sampling 
yields data that accurately describe conditions on the 
sampled sites, broader populations may not be accurately 
characterized.  

Probability sampling
Probability sampling replaces subjective judgments 

with objective rules based on known probabilities of 
selection for each sampling point. The important principle 
is that probability sampling is an objective method with 
precise rules and a statistical foundation for estimating 
population attributes based on a sample. Thus, probability 
rather than purposive sampling is highly recommended for 
MRVs and NFIs, at least partially because discrediting the 
accuracy of population estimates from a purposive sample 
is much easier than defending the estimates.

Many of the challenges associated with selecting a 
sampling design arise from two factors: first, sampling 
units are distributed in a space and, as such, observations 
of them may be spatially correlated; second, different 
sampling designs have different costs. Spatial dependence 
among observations of variables of interest strongly 
influences selection of sampling designs. Ecological, 
climatic, and soil factors and forestry management 
practices cause observations from plots that are near to 
each other to be more similar than observations from 
plots that are separated by greater distances. Although 
spatial dependence does not necessarily invalidate 
variance estimators, it does contribute to larger variance 
estimates and, therefore, less efficient sampling.  

In a strict sense, construction of a completely optimal 
sampling design is an impossible task because the 
numerous NFI and MRV variables vary quite differently 
in space. Therefore, because optimal sampling designs 
would be different for different variables, optimization 
may require focusing on a single feature such as the 
standard error of the estimate of a single important 
variable such as wood volume or on a weighted function 
of multiple features such as the standard errors for a 
small number of variables. One partial solution is to 
minimize the detrimental effects of spatial correlation 
on efficiency by selecting sampling points as far apart as 
possible, subject to travel and cost constraints. Finally, 
the important challenge is to develop a sampling design 
that is as simultaneously optimal as possible for both an 
MRV and an NFI.

A common starting point in selecting a sampling 
design is knowledge of the acceptable upper bounds 
for the standard errors of the estimates and an upper 
bound for cost. Optimizing the sampling design requires 
prior information on sampling variability within the 
population of interest and involves selecting a procedure 
for spatially distributing the sampling points in such 
a way that standard errors are minimized while not 
exceeding the total allowable costs. A simple random 
sampling design randomly selects sampling points within 
the population. Although by chance, the distribution of 
sampling points may include spatial groups or spatial 
voids, the sample remains a valid probability sample.   
The geographic coordinates for each sampling point 
in a simple random sample may be selected with a 
random number generator with the allowable coordinates 
restricted to the sampled population. Otherwise, no 
consideration is given to safety, difficulty of measuring 
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plots, or travel to and from plot locations. From an 
inferential perspective, this is the least risky probability 
sampling design, but it is also usually the least efficient 
with respect to cost, precision of estimates because of 
spatial correlation, and spatial balance as characterized 
by avoidance of large gaps in spatial coverage.

Because NFIs are national in scope, sampling designs 
must provide spatial coverage of the entire country, albeit 
not with the same intensity everywhere. Sampling designs 
for MRVs, however, are not necessarily required to provide 
coverage for lands that are not subject to human-induced 
carbon emissions. In addition, because of logistical and 
budgetary constraints, ground sampling for new NFIs 
and MRVs may be implemented sequentially with initial 
priority given to regions with greater emissions. Although 
substantial regional differences in plot configurations and 
sampling designs may be accommodated, estimation is 
facilitated if differences are minimized. 

Systematic sampling
A common approach to assuring spatial balance and 

decreasing the adverse effects of spatial correlation 
on sampling variability is to use systematic sampling 
designs based on fixed arrays or rectangular grids. The 
advantage of systematic sampling is that it maximizes the 
average distance between sampling points and therefore 
minimizes spatial correlation among observations 
and increases statistical efficiency, while yet assuring 
spatial balance. For example, sampling points could be 
selected at the intersections of a 10-km x 10-km grid. 
The starting point and orientation for this grid should 
be randomly selected, but no other randomization 
is necessary. Variations on this sampling design are 
common in forestry. The greatest risk is that the 
orientation of the grid may, by chance, coincide with 
or be parallel to natural or man-made features such as 
roads, rivers, or other topographical features. Systematic 
aligned sampling designs feature sampling points at 
regular intervals such as at intersections of grid lines 
or at centers of array or grid cells, whereas systematic 
unaligned sampling designs combine features of both 
simple random and systematic sampling designs by 
randomly selecting a location within each grid or array 
cell (Cochran, 1977). Statistical variance estimators used 
to estimate uncertainty typically assume simple random 
sampling. When they are used with systematic sampling, 
variance estimates are usually conservative in the sense 
that they are slightly too large (Särndal et al., 1992).

For very large geographic areas, consideration should 
be given to the effects of the orientation of gridlines along 
lines of longitude. In higher latitudes the converging nature 
of north-south gridlines causes sampling points to be closer 
together than in lower latitudes. In such cases, plots located 
at greater distances from the equator will represent less 
population area than plots located closer to the equator. 
Multiple solutions are possible including using different 
coordinate systems, weighting plot observations, and basing 
sampling designs on hexagonal arrays rather than rectangular 
grids (White et al., 1992; McRoberts et al., 2005).  

Stratification
Stratified approaches to sampling are used for 

multiple reasons but primarily to increase precision or 
to vary sampling intensities to accommodate criteria 
related to political and ecological priorities, spatial 
coverage, logistical effort, and cost. For example, for 
an MRV that emphasizes geographic regions subject 
to human-induced carbon emissions, smaller sampling 
intensities and less precision may be acceptable for 
remote, inaccessible regions that are less likely to be 
developed or harvested. In addition, the cost associated 
with greater sampling intensities in remote regions may 
be prohibitive. Nevertheless, sampling, albeit perhaps 
with varying intensities, must be conducted in all regions 
of the population to achieve spatial balance.  

Multiple principles guide stratified approaches 
to sampling. First, strata with stable boundaries are 
generally preferable. Otherwise, changes to boundaries of 
strata with different sampling intensities lead to different 
probabilities of selection and complicate estimation. In 
particular, stratified sampling designs for which the strata 
are based on land cover attributes that change present 
difficulties for two reasons. Second, because land cover 
attributes, and hence the strata, change, plots may need 
to be re-allocated to strata for each remeasurement.  
This means that some plots selected for a previous 
measurement will be abandoned, and some new plots 
must be established for the succeeding measurement.  
Such procedures make precise estimation of change 
more difficult. If plots are not abandoned or added, then 
the sampling intensities within the new strata are not 
uniform which leads to difficulty in re-calculating new 
probabilities of selection. Third, stratified estimation 
requires that a plot be assigned to one and only one 
stratum. If the stratum to which a plot is assigned 
changes between measurements, then difficulties arise 
as to the stratum to which a plot change observation 
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should be assigned. Thus, strata defined by topography, 
climatic zones, biomes, or political boundaries that are 
relatively stable may be preferable to strata defined by 
changing forest attributes such as density or forest type.  
However, assignment of plots to strata has no effect on 
the unbiasedness of the stratified estimator; the only 
effect of different assignments of plot to strata is the 
degree to which stratified estimation contributes to 
reducing estimates of population variances.  

Stratified sampling is most often implemented 
using one of three plot allocation schemes. With equal 
allocation, the same number of plots is allocated to all 
strata, regardless of strata sizes. This scheme is preferred 
if the objective is estimates for individual strata. With 
optimal allocation, sampling intensities selected for strata 
are based on optimization criteria such as measurement 
costs and/or within-stratum variation of observations of 
variables of interest such as volume or biomass, or their 
likely changes. Greater sampling intensities are selected 
for strata with greater variation and/or lesser measurement 
costs. With proportional allocation, strata sample sizes are 
proportional to strata sizes. Cochran (1977) provides a 
comprehensive discussion regarding alternative strategies. 

For tropical countries with remote and nearly 
inaccessible regions, some form of optimal allocation 
will usually be necessary to mitigate the excessive costs 
associated with sampling these regions. Proportional 
and optimal allocation can be easily implemented using 
sampling designs based on networks of perpendicular 
grid lines. With proportional allocation, sampling points 
are established at grid intersections without regard to 
the stratum associated with the points. One approach 
is to overlay a dense systematic grid over the entire 
country and vary the portion of the grid that is actually 
used with respect to desired sampling intensity. For 
example, in regions, topographies, or strata requiring 
greater sampling intensities, sampling points may be 
established at all grid intersections or at randomly 
selected locations in the cells bounded by all grid lines.  
Where lesser sampling intensities are required, sampling 
points may be established only at the intersections of 
every second grid line or at randomly selected locations 
in cells bounded by every second grid line.  

Even if stratified sampling is not used, stratified 
estimation may still contribute to substantial increases in 
precision. For example, McRoberts et al. (2002) showed 
how an existing, relatively stable land cover classification 
can be used as the basis for stratification. Stratified 

variance estimates were smaller by factors ranging from 
1.5 to 4.0, depending on the area, than simple random 
sampling estimates. In addition, post-stratification based 
on classifications obtained from both optical and lidar 
data have been demonstrated to be effective (McRoberts 
et al., 2006, 2012). Beneficial effects may be realized in 
two ways, either by increasing precision or by permitting 
reduced sample sizes with no loss in precision.

A popular approach to stratified estimation, as was 
used for the Tanzania case study discussed in detail 
below, is a two-phase approach characterized as double 
sampling for stratification. With this approach, a large 
number of first-phase plots is randomly distributed 
throughout the population, often using a systematic 
sampling design. Evaluation of these plots focuses 
on strata assessment, is often conducted using aerial 
photography or high resolution imagery, and produces 
estimates of stratum weights. In the second phase, a 
proportion of the first-phase plots is randomly selected 
for field measurement using any valid probability 
sampling design.  Information from the first phase may 
be used to optimize the second phase, within-strata 
sample sizes. An important aspect of double sampling 
for stratification is that the stratum weights are estimated, 
whereas when a climatic, topographical, or biophysical 
map is used as the basis for defining the strata, the 
stratum weights are often considered to be known.

Variance estimation

Inferences in the form of confidence intervals or tests 
of hypotheses require estimates of uncertainty which are 
typically expressed in terms of variances which are defined 
as        ,where E(.) denotes statistical expectation, m 
is a parameter of interest, and   is an estimator of m.  
Variance is also characterized as mean square error, and 
often standard error, which is the square root of variance, 
is reported. Although a complete discussion of issues 
related to variance is not possible, two items warrant 
consideration. First, and most importantly, for design-
based inference which relies on probability sampling 
designs for validity, variance estimators are completely 
dependent on sampling designs. In particular, variance 
estimators for simple random, clustered, and stratified 
sampling designs are considerably different. Failure to 
select the variance estimator appropriate for the sampling 
design produces erroneous variance estimates and 
invalidates inferences. Multiple texts address derivation 

( )2ˆE m m−
m̂
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and selection of variance estimators including Cochran 
(1977), Särndal et al. (1992), Gregoire & Valentine (2007),  
Mandallaz (2008), and Tomppo et al. (2011). Second, 
variances of estimates of change are invariably greater 
than variances of estimates of current conditions.

Sample size

Determination of sample size is one of the most 
important steps in constructing a sampling design. 
If the sample is too small, then uncertainty will be 
great; if the sample is too large, then the cost will 
be unnecessarily large. As the number of sampling 
points increases, the variance of the estimate of a mean 
decreases, the precision of the estimate increases, and 
more confidence can be placed in the estimate. With 
probability samples, the probability that an estimate 
is within a specified range of the true value may 
be approximated. These are the roles of confidence 
intervals which are estimated ranges of estimates of 
the parameter of interest that are likely to include the 
true, but unknown, parameter value. 

Numerous references for calculation of sample 
size are available (e.g., Cochran, 1977), and all 
require preliminary estimates of means and standard 
deviations of plot observations which may be 
obtained using existing data, a pilot study, or a 
small sample of plots.  For purposes of an example, 
assume simple random sampling, that volume (m3 
ha-1) was measured on 50 plots, that the mean was  
x =100 m3 ha-1, and that the standard deviation 
was s =30 m3 ha-1. If the precision requirement is 
to estimate the mean within a specified percentage 
tolerance (±tol) with confidence 1-a, then the 
approximate required sample size, n, is,

pertain to within strata sample sizes. These simple 
calculations assume independence of the observations; 
spatial correlation among observations increases sample 
sizes.

Remote sensing considerations

The use of remotely sensed data to support and 
enhance forest inventories has become common practice 
in Europe and North America (McRoberts et al., 2002, 
2010; McRoberts & Tomppo, 2007; Tomppo et al., 
2008a, 2008b). For tropical forest inventories, the 
remote and inaccessible nature of forest land means 
that inventories may have to rely more heavily and in 
different ways on remotely sensed data. The intent here 
is not to provide a comprehensive discussion on the 
topic but rather simply to highlight a few remote sensing 
issues that merit consideration when selecting a plot 
configuration and a sampling design. For example, if 
satellite imagery is used, plots should be large enough 
to constitute adequate samples of the image pixels that 
contain plot centers. Further, if plots are configured in 
clusters, distances between plots in the same cluster 
should be at least as great as pixel widths. However, the 
detrimental effects of persistent cloud cover may inhibit 
acquisition of sufficient cloud-free optical satellite data.  

Lidar (light detection and ranging) data, which are 
mostly acquired from airborne platforms and use laser 
techniques, are emerging as an attractive and relevant 
alternative (Næsset, 2002; Næsset & Gobakken, 2008; 
McRoberts et al., 2010, 2013; Vibrans et al., 2013). If 
plots are located at the intersections of perpendicular 
grids, acquisition of lidar data from airborne platforms 
is facilitated because straight flight lines can be used. To 
facilitate lidar acquisition even more, grid lines separated 
by greater distances in one direction than the other may 
be used whereby plots are placed at grid intersections 
along the grid lines with the greater intersection intensity.  
A plot boundary effect that merits consideration for lidar 
analyses is that biomass within the vertical extension 
of a plot boundary may be part of a tree whose stem 
is outside the plot. Circular plots, which minimize the 
ratio of circumference to area, may help to alleviate 
this problem.

Because field measurements are expensive to 
acquire, particularly in tropical forests, the requirements 
for ground data for training remote sensing-based 
classification and prediction techniques and for 
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where Z denotes the percentage points of the Normal 
or Gaussian distribution. For this example,     is used 
rather than     because two-sided confidence intervals 
are of interest. Thus, for tolerance, tol=±5 percent, 
and confidence of 1-a=0.95,            ,whereas 
for tol=±1 percent and confidence of 1-a=0.99, 
             .For stratified sampling, these estimates 
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assessing the accuracy of remote sensing-based products 
and estimates should be considered in advance. For 
example, ground data to be used with satellite imagery 
to construct a land cover map should include samples of 
all land cover classes of interest. This requirement may 
necessitate a form of stratified sampling. Similarly, if a 
map of deforestation is to be constructed, then sufficient 
numbers of plots whose land cover has changed should 
be included in the sample. Again, a form of stratified 
sampling may be required.

In practice, the same sample data are often used for 
estimation using only the ground data and estimation 
based on a combination of ground and remotely sensed 
data.  If the remote sensing sampling requirements can 
be accurately anticipated before sampling, then a single 
ground sampling design that is efficient for multiple 
purposes may be possible. If not, the challenge is to 
develop an accuracy assessment sampling design that 
satisfies the remote sensing requirements and that can 
be readily integrated into the original sampling design.  
Finally, if ground data from sample plots are to be co-
registered geographically with satellite image or lidar 
data, accurate plot locations must be determined which, 
in turn, requires accurate geographical positioning 
system (GPS) receivers. Failure to correctly register 
ground and remotely sensed data means that remotely 
sensed data may be associated with incorrect ground 
data. For homogeneous ground cover the consequences 
may not be severe, but for fragmented or rapidly 
changing forest conditions the consequences may be 
quite detrimental. McRoberts (2010b) showed that 
when GPS receivers with accuracies in the range  
15-20 m are used, approximately half of ground 
plots may be associated with incorrect 30-m x 30-m 
Landsat pixels.  The result is inaccurate classification 
of the imagery and erroneous estimates based on the 
classification.

Assessment of total uncertainty

All sources of uncertainty have detrimental effects 
on the accuracy of estimates, the precision of estimates, 
or both. For this discussion, accuracy pertains to the 
deviation of an estimate from the true value, whereas 
precision is associated with the statistical concept of 
variance and pertains to the confidence in the estimate.  

Multiple sources of uncertainty contribute to lack of 
accuracy. First, a sample mean may deviate considerably 

from the true value, even if the sample is properly 
selected, observations and measurements are correctly 
obtained, and an unbiased estimator is used. This is 
simply a case of random effects and natural variability 
in the population and should not be characterized as 
“error” which connotes a mistake. The solution is 
greater sample sizes or more optimal plot configurations.  
Second, an estimate that is based on model predictions 
may be inaccurate because the model was incorrectly 
specified, the data used to calibrate the model were not 
representative of the population to which the model was 
applied, or observations and measurements of variables 
were incorrectly acquired. Uncertainty accruing from 
this source is correctly designated as error. An example 
of such error is use of individual tree volume or biomass 
models that were developed for different climatic, 
topological, or ecological zones or for different species. 
The solution is acquisition of sufficient sample data to 
validate existing models or to construct new models.  

Multiple sources of uncertainty contribute to lack 
of precision. First, sample sizes may be inadequate to 
estimate means or to fit models with sufficient precision.  
Three additional sources of uncertainty contribute to 
imprecision in model predictions. The first source, 
residual variability around model predictions, cannot 
usually be reduced apart from a better mathematical form 
of the model or use of additional predictor variables.  
Second, the input variables for a model may themselves 
be predicted from other models. In such cases, the 
uncertainty in the estimates of the input variables 
should be propagated through to the output variables.  
An example is the use of model-based estimates of tree 
height as input to a model that uses tree diameter and 
tree height to estimate tree volume or biomass. The 
third source is the uncertainty of the model parameter 
estimates. Assuming the model is correctly specified, the 
effects of this source of uncertainty can be reduced by 
using a larger sample to fit the model. Overall, the total 
uncertainty of model predictions must accommodate 
all three sources: residual variability, propagation 
of uncertainty in predictor variables, and parameter 
uncertainty. In general, the effects of the first source 
cannot be reduced; the effects of the second source are 
often inappropriately ignored; but the effects of the third 
source can be reduced via construction of a better model 
and increasing sample sizes.

Finally, variance estimation for purposes of quantifying 
precision is often complex and computationally 
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intensive, particularly when estimates are obtained 
from remote sensing-based maps. In fact, parametric 
estimators in the form of simple equations may not 
be available or may be very difficult to incorporate 
into estimation software. For some applications, the 
variance estimators are just now beginning to appear 
in the literature (McRoberts, 2010a, 2012; McRoberts 
& Walters, 2012; McRoberts et al., 2013; Gregoire et 
al., 2011; Næsset et al., 2013). An increasingly popular 
alternative is to use resampling estimators such as the 
jackknife (Quenouille, 1949) or the bootstrap (Efron & 
Tibshirani, 1994; McRoberts, 2010a). However, caution 
is advised, because these resampling estimators quantify 
only the portion of uncertainty resulting from sampling, 
not the uncertainty resulting from model misspecification 
or lack of fit. In addition, the resampling procedures must 
mimic the original sampling features such as clustering. 

Case studies

Brazil
The NFI of Brazil (NFI-BR) is conducted by the 

Brazilian Forest Service (BFS) of the Ministry of 
Environment. The BFS was created in 2006 as a means 
of promoting sustainable forest production through forest 
management in public forests, as well as promoting 
forest development at the national level. One of its legal 
mandates is to implement a national forest information 
system (NFIS) of which the NFI is one of the most 
important components.

The main purpose of the NFI-BR is to generate 
information on forest resources, both natural and 
plantations, to support the formulation of public policies 
and projects aiming at forest development, use, and 
conservation. The NFI is nationwide and multisource 
and reports information on forest resources based on a 
5-year measurement cycle.

The sampling design for field data collection features 
plot clusters located at the intersections of a systematic 
grid of 648 x 648 seconds of geographical distance 
which, at the Equator corresponds to an approximate 
20-km x 20-km grid of potential sampling points. Plots 
to be measured in the field are visited regardless of their 
forest or non-forest status. Multiple sub-grids of 10-km x 
10-km or 5-km x 5-km can be adopted whenever states 
and municipalities wish to invest in greater sampling 
intensity to increase the precision of estimates for forest 
types of high economic or ecological value or when a 

state’s forested area is small. Fixed-area sampling units 
are grouped into clusters of four rectangular sample 
plots located 50 m from a central sampling point in the 
cardinal directions (Freitas et al., 2010). Plot sizes and 
shapes are defined according to biome characteristics. 
Each sample plot is 20-m x 50-m for measurement of 
trees with diameter at-breast-height (dbh, 1.3 m) of at 
least 10 cm, although for Amazonian biome the plot is 
20-m x 100-m to increase inclusion of large trees with 
dbh≥ 40 cm. Each sample plot includes 10-m x 10-m and 
5-m x 5-m nested subplots for measurement of saplings 
and seedlings. At the central point of each cluster, a soil 
sample is collected and two perpendicular 10-m transects 
are used to collect data on down dead woody material. 
Data collection on sample clusters includes observation 
and measurement of both continuous and categorical 
forest variables such as classical dendrometric variables, 
species identification, and qualitative variables that are 
useful for forest ecosystem characterization. NFI-BR is 
currently being implemented with Santa Catarina and 
the Federal District as the first states to complete field 
data collection. 

Santa Catarina
As part of NFI-BR, the southern Brazilian State of 

Santa Catarina, with a surface area of 95,346 km² and 
representing 1.1 percent of Brazilian territory, completed 
the data collection portion of its inventory in accordance 
with the NFI guidelines (Brasil, 2007), between 2007 
and 2011. The Floristic and Forest Inventory of Santa 
Catarina (IFFSC), however, is more detailed in some 
aspects than the NFI to accommodate special data 
requirements associated with local socio-economic and 
conservation purposes. IFFSC was designed to evaluate 
the conservation status of forest remnants and to support 
a new forest conservation and land use policy (Vibrans 
et al., 2010, 2012).

Therefore, IFFSC included a floristic survey 
focused on endangered tree species that included five 
components: (1) digitalization and integration of Santa 
Catarina’s herbaria data sets, (2) a field inventory, 
(3) evaluation of the genetic structure of endangered 
tree populations, (4) analysis of the socio-economic 
importance of forest resources and (5) an online geo-
referenced database accessible by decision makers and 
the public.  

Based on recent remotely sensed data (Santa Catarina, 
2005) and the potential vegetation map (Klein, 1978), 
forest land was evaluated using a systematic sampling 
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design based on 4,000-m2, fixed area clusters, each 
containing four 20-m x 50-m (1,000-m²) plots located 
50 m from the center in the cardinal directions. Grid 
densities for the design varied: a 10-km x10-km grid was 
used for coastal rain forests and mixed ombrofhylous 
forest with Araucaria; a 5-km x5-km grid was used for 
more threatened and fragmented deciduous forests in 
order to obtain a minimum number of plots to support 
statistical analyses; and a 20-km x 20-km grid was used 
for non-forest land to achieve cost efficiency. Initially the 
FAO definition of forest (FAO, 2009) was to be used, but 
mapping and analyses conducted subsequent to field data 
collection were based on IFFSC criteria that specified 
woody formations with a minimum age of approximately 
15 years, canopy cover greater than 50%, and minimum 
canopy height of 10 m, as also noted by Ribeiro et al. 
(2009). Forest regrowth below these threshold values 
was sampled on non-forest land. On the whole, 421 forest 
clusters and 157 non-forest clusters were established and 
are to be remeasured at 5-year intervals; additionally 19 
clusters were established independently of the grid-based 
design in conservation units as examples of forests with 
attributes more characteristic of primary forests such as 
greater species and size diversity, greater tree heights, 
and greater biomass.  

Within the sample units two vegetation classes were 
measured: the main stratum consisted of all woody 
individuals with DBH ≥10 cm, and the secondary 
stratum consisted of regeneration and understory shrubs 
with height >0.50 m and DBH <10 cm. In each forest 
class, sample plot dendrometric data for 2-4 sampled 
trees were collected to support construction of individual 
tree height and volume models and to validate existing 
regional biomass models. Epiphyte diversity was 
specifically assessed by field crews for eight forophytes 
at 30 selected sample plots using arborism techniques. 
The floristic survey included collection data for all fertile 
trees, shrubs, herbs and epiphytes within the sample 
unit and its surroundings. For all sampled remnants, 
a detailed physiognomic description was prepared, 
including disturbance factors and any type of human 
impact within the sampled forest and its surroundings. 

For data processing, sample plots were stratified 
based on two factors: first, spatial distribution patterns 
of species composition and density, and, second, 
successional stages. The latter stratification was 
particularly important for assessing regrowth stages  and 
plant communities in landscapes with highly fragmented 

and mostly secondary forests under permanent pressure 
due to land use changes, intensive agriculture, and forest 
plantation activities. Using multiple remote sensors 
and a time series approach, basic landscape ecology 
analyses are conducted for randomly selected 10-km 
x10-km windows located on the 20-km x 20-km grid 
and focus on land-use-changes and landscape metrics 
such as patch area, density, perimeter and edge classes 
and connectivity of forest patches. 

Tanzania
For a sampling design for Tanzania, Tomppo et al. 

(2010a) used double sampling for stratification and 
optimal allocation of plots to strata. The first phase 
sample consisted of an office assessment of a dense grid 
of field plots for assignment to volume and cost classes.   
Based on these assessments, strata were constructed 
using predicted cluster-level average volume of growing 
stock and estimated cost to measure a plot cluster.  
Volume classes were based on volume predictions using 
satellite imagery, observations for ground plots outside 
Tanzania, and robust models whose predictions were 
calibrated using areal volume estimates for Tanzania.  
Neyman allocation (Cochran, 1977) was used to select 
boundaries for the volume classes so as to maximize 
the precision of the overall volume estimate assuming a 
fixed sample size. Cost classes were based on geographic 
information system (GIS) analyses and local expert 
opinion of the number of days (one, two, more than two) 
necessary to measure a plot cluster. Selection of the class 
intervals, which affects the gain that can be achieved 
with stratification, requires greater investigation. The 
second phase sample consists of field measurement 
of plots where within-strata sampling intensities were 
selected using optimal allocation (Cochran, 1977). With 
optimal allocation, sampling intensities are proportional 
to the quantity      where σh is the within-stratum 
standard deviation for observations of the variable of 
interest (mean growing stock volume) and ch is the 
average cost in terms of measurement time for a plot 
cluster in stratum h. The second phase consisted of 
field measurement of 32,660 plots configured into 
approximately 3,400 clusters. Concentric circular plots 
with radii of 15-, 10-, 5- and 1-m, with corresponding 
dbh thresholds of 20-, 10-, 5- and 1-cm, were used.  
Measurements for the smallest of these circular plots 
were acquired only for permanent plots. More details 
concerning the sampling design and plot configuration 
can be found in Tomppo et al. (2010a).

hh cσ
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Lessons learned from case studies
In the tropics, use of available vegetation maps to 

delineate land into forest and non-forest is sometimes 
appealing. However, if plot clusters are not established 
on delineated non-forest land in the same manner as on 
delineated forest land, map errors could contribute to 
bias because forest land erroneously delineated as non-
forest land will not be sampled. The additional costs 
associated with sampling delineated non-forest land can 
be decreased by allocating lesser sampling intensities 
to these lands. In addition, field measurement of plot 
clusters entirely outside forest and without growing stock 
can be often avoided by assessing such clusters with land 
use information obtained from other reliable sources 
such as was proposed for Brazil (Establishing…, 2009). 

The lack of transportation routes, other than rivers, 
presents a special challenge for tropical forest inventories 
such as in the Amazonian biome. For example, roads 
may be available only a part of the year, approximately 
six months in the Amazonian biome. In addition, some 
forests may be designated for nature conservation 
purposes or for the sole use of indigenous peoples. 
Stratification based on relevant variables such as the 
likelihood of changes and measurement costs promote 
both cost efficiency and adherence to sound statistical 
inventory principles. 

Conclusions

The forestry sector makes substantial contributions 
to the GHG balance as both a source resulting from 
deforestation in developing countries and as a sink 
through sequestration of atmospheric GHG emissions.  
Development of carbon accounting programs in tropical 
countries, either through new NFIs or MRVs, requires 
scientifically valid and credible ground sampling 
programs.       

Although the general statistical principles for 
configuring plots and constructing sampling designs are 
the same for tropical forests as for boreal and temperate 
forests, the particular features may differ considerably.  
Compelling factors contributing to the unique features of 
tropical inventories include the remote and inaccessible 
nature of many tropical forests, greater species diversity, 
and the necessity of relying on remotely sensed data as 
a primary data source rather than simply as a means of 
enhancing estimates obtained from ground sampling.  
The case studies for the Brazilian NFI, the inventory 
for the Brazilian state of Santa Catarina, and the NFI for 

Tanzania illustrate application of the general principles 
previously discussed. In addition, they illustrate how 
specific applications can be tailored to unique ecological, 
climatic, economic, and demographic conditions.  
Completion of these inventories, including data 
analyses and reporting, will permit further modification 
to accommodate emerging NFI requirements such 
as biodiversity assessment, carbon accounting, and 
standards and expectations associated with MRVs 
conducted under the auspices of the IPCC. 
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