Vermicomposto na composição do substrato para produção de mudas de Schinus terebinthifolius
DOI:
https://doi.org/10.4336/2018.pfb.38e201801653Palavras-chave:
Viveiros florestais, Fertilização, SubstratosResumo
O objetivo do presente estudo foi analisar o efeito da adição de vermicomposto ao substrato na produção de mudas de Schinus terebinthifolius Raddi. Para isso, foram testados cinco tratamentos compostos pela adição de vermicomposto ao substrato Carolina Soil® (T1: 100% de Carolina Soil® (CS); T2: 75% de Carolina Soil® e 25% de vermicomposto (VC); T3: 50% de CS e 50% de VC; T4: 25% de CS e 75% de VC e T5: 100% de VC). Foram avaliadas as seguintes características morfofisiológicas das mudas: diâmetro do coleto (d), altura da parte aérea (h), teor de pigmentos fotossintéticos, massa seca da parte aérea (MSPA), massa seca de raízes (MSR), massa seca total (MStotal), índice de qualidade de Dickson, relação h/d e MSPA/MSR. Os dados foram submetidos à análise de variância, análise de regressão e correlação de Pearson. A correlação e a curva de resposta para o crescimento das mudas, em razão das diferentes proporções de vermicomposto e substrato comercial, mostraram que as adições de 50 ou 75% de vermicomposto foram as que mais favoreceram o crescimento das mudas de S. terebinthifolius.
Downloads
Referências
Amaral, P. P. et al. Promotores de crescimento na propagação de caroba. Pesquisa Florestal Brasileira, v. 37, n. 90, p. 149-157, 2017. DOI: 10.4336/2017.pfb.37.90.1402.
Amiri, H. et al. Influence of vermicompost fertilizer and water deficit stress on morpho-physiological features of chickpea (Cicer arietinum L. cv. karaj). Compost Science & Utilization, v. 25, n. 3, p. 152-165, 2017. DOI: 10.1080/1065657X.2016.1249313.
Andreazza, R. et al. Efeito do vermicomposto no crescimento inicial de ipê amarelo (Handroanthus chrysotrichus) e leucena (Leucaena leucocephala). Nativa, v. 1, n. 1, p. 29-33, 2013. DOI: 10.14583/2318-7670.v01n01a06.
Antunes, R. M. et al. Crescimento inicial de acácia-negra com vermicompostos de diferentes resíduos agroindustriais. Ciência Florestal, v. 26, n. 1, p. 1-9, 2016. DOI: 10.5902/1980509821060.
Azevedo, C. F. et al. Estudo farmacobotânico de partes aéreas vegetativas de aroeira-vermelha (Schinus terebinthifolius Raddi, Anacardiaceae). Revista Brasileira de Plantas Medicinais, v. 17, n. 1, p. 26-35, 2015. DOI: 10.1590/1983-084X/11_090.
Baldotto, L. E. B. et al. Initial growth of maize in response to application of rock phosphate, vermicompost and endophyticbactéria. Revista Ceres, v. 59, n. 2, p. 262-270, 2012. DOI: 10.1590/S0034-737X2012000200016.
Bonnet, B. R. P. et al. Effects of substrates composed of biosolids on the production of Eucalyptus viminalis, Schinus terebinthifolius and Mimosa scabrella seedlings and on the nutritional status of Schinus terebinthifolius seedlings. Water Science & Technology, v. 46, n. 10, p. 239-46, 2002. DOI: 10.2166/wst.2002.0342.
Brondani, G. E. et al. Fertilização de liberação controlada no crescimento inicial de angico-branco. Scientia Agraria, v. 9, n. 2, p. 167-176, 2008.
Caldeira, M. V. W. et al. Composto orgânico na produção de mudas de aroeira vermelha. Scientia Agraria, v. 9, n. 1, p. 27-33, 2008. DOI: 10.5380/rsa.v9i1.9898.
Carvalho, M. G. et al. Schinus terebinthifolius Raddi: chemical composition, biological properties and toxicity. Revista Brasileira de Plantas Medicinais, v. 15, p. 158-169, 2013. DOI: 10.1590/S1516-05722013000100022.
Carvalho, P. E. R. Espécies arbóreas brasileiras. Brasília, DF: Embrapa Informação Tecnológica; Colombo: Embrapa Florestas, 2003. v. 1. 1039 p.
Costa, C. O. D. et al. Phytochemical screening, antioxidant and antibacterial activities of extracts prepared from different tissues of Schinus terebinthifolius Raddi that occurs in the coast of Bahia, Brazil. Pharmacognosy Magazine, v. 11, n. 43, p. 607-614, 2015. DOI: 10.4103/0973-1296.160459.
Delarmelina, W. M. et al. Diferentes substratos para a produção de mudas de Sesbania virgata. Floresta e Ambiente, v. 21, n. 2, p. 224-233, 2014. DOI: 10.4322/floram.2014.027.
Dickson, A. et al. Quality appraisal of white spruce and white pine seedling stock in nurseries. Forest Chronicle, v. 36, p.10-13, 1960. DOI: 10.5558/tfc36010-1.
El-Massry, K. F. et al. Chemical compositions and antioxidant/antimicrobial activities of various samplesprepared from S. terebinthifolius leaves cultivated in Egypt. Journal of Agricultural and Food Chemistry, v. 57, n. 12, p. 5265-5270, 2009. DOI: 10.1021/jf900638c.
Fermino, M. H. Substratos, composição, caracterização e métodos de análise. Guaíba: Agrolivros, 2014. 112 p.
Ferreira, D. F. Sisvar: a computer statistical analysis system. Ciência e Agrotecnologia, v. 35, n. 6, p. 1039-1042, 2011. DOI: 10.1590/S1413-70542011000600001.
Glória, L. L. et al. Phenolic compounds present Schinus terebinthifolius Raddi influence the lowering of blood pressure in rats. Molecules, v. 22, n. 10, 11 p., 2017. DOI: 10.3390/molecules22101792.
Gonçalves, J. L. M. et al. Produção de mudas de espécies nativas: substrato, nutrição, sombreamento e fertilização. In: Gonçalves, J. L. M.; Benedetti, V. (Ed.). Nutrição e fertilização florestal. Piracicaba: IPEF, 2000. p. 309-350.
Grossnickle, S. C. & MacDonald, J. E. Seedling Quality: History, application, and plant attributes. Forests, v. 9, n. 5, p. 1-23, 2018a. DOI:10.3390/f9050283.
Grossnickle, S. C. & MacDonald, J. E. Why seedlings grow: influence of plant atributes. New Forests, v. 49, n. 1, p. 1-34, 2018b. DOI: 10.1007/s11056-017-9606-4.
Grossnickle, S. C. Why seedlings survive: influence of plant attributes. New Forests, v. 43, n. 5-6, p. 711-738, 2012. DOI: 10.1007/s11056-012-9336-6.
Hosseinzadeh, S. R. et al. Effect of vermicompost fertilizer on photosynthetic characteristics of chickpea (Cicer arietinum L.) under drought stress. Photosynthetica, v. 54, n. 1, p. 87-92, 2016. DOI: 10.1007/s11099-015-0162-x.
Joshi, R. et al. Vermicompost as an effective organic fertilizer and biocontrol agent: effect on growth, yield and quality of plants. Reviews in Environmental Science and Bio/Technology, v. 14, n. 1, p. 137-159, 2015. DOI: 10.1007/s11157-014-9347-1.
Kämpf, A. N. Produção comercial de plantas ornamentais. 2. ed. Guaíba: Agrolivros, 2005. 256 p.
Kruger, L. C. & Volin, J. C. Reexamining the empirical relation between plant growth and leaf photosynthesis. Functional Plant Biology, n. 33, n. 5, p. 421-429, 2006. DOI: 10.1071/FP05310.
Lazcano, C. et al. Vermicompost enhances germination of the maritime pine (Pinus pinaster Ait.). New Forests, v. 39, n. 3, p. 387-400, 2010. DOI: 10.1007/s11056-009-9178-z.
Lisboa, A. C. et al. Crescimento e qualidade de mudas de Handroanthus heptaphyllus em substrato com esterco bovino. Pesquisa Florestal Brasileira, v. 38, e201701485, p. 1-6, 2018. DOI: 10.4336/2018.pfb.e201701485.
Lorenzi, H. Árvores brasileiras: manual de identificação e cultivo de plantas arbóreas nativas do Brasil. Nova Odessa, São Paulo: Instituto Plantarum, v. 1, 2000. 368 p.
Mazza, M. C. M. et al. Schinus terebinthifolius. In: Coradin, L. et al. Espécies nativas da flora brasileira de valor econômico atual ou potencial: plantas para o futuro: Região Sul. 2011. p. 226-242.
Nascimento, A. F. et al. Essential oil composition and acaricidal activity of Schinus terebinthifolius from Atlantic Forest of Pernambuco, Brazil against Tetranychus urticae. Natural Product Communications, v. 7, n. 1, p.129-132, 2012.
Pacheco, M. V. et al. Avaliação da qualidade fisiológica de sementes de Schinus terebinthifolius Radii., v. 33, n. 4, p.762-767, 2011. DOI: 10.1590/S0101-31222011000400018.
Saldanha, C. W. et al. Escarificação mecânica e química na germinação de sementes de Schinus terebinthifolius Raddi. Enciclopédia Biosfera, v. 14, n. 25, p. 518-529, 2017. DOI: 10.18677/EnciBio_2017A47.
Santos, M. R. A. et al. Composição química e atividade inseticida do óleo essencial de Schinus terebinthifolius Raddi (Anacardiaceae) sobre a broca-do-café (Hypothenemus hampei) Ferrari. Revista Brasileira de Plantas Medicinais, v. 15, n. 4, p. 757-762, 2013. DOI: 10.1590/S1516-05722013000500017.
Santos, A. C. A. et al. Efeito fungicida dos óleos essenciais de Schinus molle L. e Schinus terebinthifolius Raddi, Anacardiaceae, do Rio Grande do Sul. Revista Brasileira de Farmacognosia, v. 20, n. 2, p. 154-159, 2010. DOI: 10.1590/S0102-695X2010000200003.
Santos, R. P. et al. Protocolo para extração de pigmentos foliares em porta-enxertos de videira micropropagados. Revista Ceres, v. 55, p. 356-364, 2008.
Schafer, G. et al. Um panorama das propriedades físicas e químicas de substratos utilizados em horticultura no sul do Brasil. Ornamental Horticulture, v. 21, n. 3, p. 299-306, 2015.
Silva, E. A. et al. Substratos na produção de mudas de mangabeira em tubetes. Pesquisa Agropecuária Tropical, v. 41, n. 2, p. 279-285, 2011.
Silva, R. F. et al. Influência de diferentes concentrações de vermicomposto no desenvolvimento de mudas de eucalipto e pinus. Floresta e Ambiente, v. 24, e20160269, 2017. DOI: 10.1590/2179-8087.026916.
Steffen, G. P. K. et al. Utilização de vermicomposto como substrato na produção de mudas de Eucalyptus grandis e Corymbia citriodora. Pesquisa Florestal Brasileira, v. 31, n. 66, p. 75-82, 2011. DOI: 10.4336/2011.pfb.31.66.75.
Taiz, L. et al. Fisiologia vegetal. 6. ed. Porto Alegre. Artmed, 2017. 858 p.
Tedesco, J. et al. Análise de solo, planta e outros materiais. 2. ed. Porto Alegre: UFRGS, 1995. 174 p.
Trigueiro, R. M. & Guerrini, I. A. Utilização de lodo de esgoto na produção de mudas de aroeira-pimenteira. Revista Árvore, v. 38, n. 4, p. 657-665, 2014. DOI: 10.1590/S0100-67622014000400009.
Uliana, M. P. et al. Composition and biological activity of Brazilian rose pepper (Schinus terebinthifolius Raddi) leaves. Industrial Crops and Products, v. 83, p. 235-240, 2016. DOI: 10.1016/j.indcrop.2015.11.077.
Vijayabharathi, R. et al. Plant growth-promoting microbes from herbal vermicomposting. In: Egamberdieva, D. et al. (Ed.) Plant-growth-promoting rhizobacteria (PGPR) and medicinal plants. [S.l.]: Springer International, 2015. v. 42. p. 71-88. DOI: 10.1007/978-3-319-13401-7_4.
Wang, Y. et al. Vermicompost and biochar as bio-conditioners to immobilize heavy metal and improve soil fertility on cadmium contaminated soil under acid rain stress. Science of The Total Environment, 2017. DOI: 10.1016/j.scitotenv.2017.10.121.
Wellburn, A. R. The spectral determination of chlorophylls a and b, as well as total carotenoids, using various solvents with spectrophotometers of different resolution. Journal of Plant Physiology, v. 144, n. 3, p. 307-313, 1994. DOI: 10.1016/S0176-1617(11)81192-2.
Wendling, I. et al. Características físicas e químicas de substratos para produção de mudas de Ilex paraguariensis St. Hil. Revista Árvore, v. 31, n. 2, p. 209-220, 2007. DOI: 10.1590/S0100-67622007000200003.
Xu, L. et al. Vermicompost improves the physiological and biochemical responses of blessed thistle (Silybum marianum Gaertn.) and peppermint (Mentha haplocalyx Briq) to salinity stress. Industrial Crops and Products, v. 94, p. 574-585, 2016. DOI: 10.1016/j.indcrop.2016.09.023.
Zelitch, I. Plant productivity and the control of photorespiration. Proceedings of the National Academy of Sciences, v. 70, n. 2, p. 579-584, 1973. DOI: 10.1073/pnas.70.2.579.
Downloads
Publicado
Como Citar
Edição
Seção
Licença
Este trabalho está licenciado sob uma licença Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
PESQUISA FLORESTAL BRASILEIRA se reserva o direito de efetuar, nos originais, alterações de ordem normativa, ortográfica e gramatical, com vistas a manter o padrão culto da língua, respeitando, porém, o estilo dos autores.
As provas finais serão enviadas ao autor correspondente.
Os trabalhos publicados passam a ser propriedade da revista PESQUISA FLORESTAL BRASILEIRA.
Os autores podem usar o artigo após a publicação, sem a autorização prévia da PFB, desde que os créditos sejam dados à Revista.
A revista se reserva o direito de distribuição dos conteúdos no suporte online e/ou impresso sob uma Licença Creative Commons.
As opiniões e conceitos emitidos nos manuscritos são de exclusiva responsabilidade dos seus respectivos autores e não da PFB.