Ecologia do fogo e o impacto na vegetação da Amazônia

Autores

  • Marcus Vinicius Athaydes Liesenfeld Universidade Federal do Acre http://orcid.org/0000-0003-3787-0141
  • Gil Vieira Instituto Nacional de Pesquisas da Amazônia
  • Ires Paula de Andrade Miranda Instituto Nacional de Pesquisas da Amazônia

DOI:

https://doi.org/10.4336/2016.pfb.36.88.1222

Palavras-chave:

Incêndio florestal, Regeneração da floresta, Impacto ambiental

Resumo

O objetivo desta revisão é apontar alguns campos de investigação atuais em ecologia do fogo e os impactos do fogo na vegetação da Amazônia. A ocorrência de incêndios na Amazônia úmida parecia uma contradição até bem pouco tempo. O fogo é independente da existência de humanos e o mesmo sempre atuou na estruturação da vegetação. Entretanto hoje, com as anomalias e as mudanças climáticas globais, os regimes de fogo têm se alterado em todo o mundo e também na Amazônia. O fogo impacta de forma diferente, dependendo da região amazônica em que ocorre, e isso pode estar relacionado ao solo, bem como à morfologia e idade das plantas. Muitas espécies podem responder de forma positiva, possuindo mecanismos de sobrevivência ou rebrote pós-fogo. É necessária uma melhor compreensão de como as plantas da Amazônia respondem ao impacto do fogo, no sentido de entender o quanto a floresta tropical Amazônica ainda é de fato imune aos incêndios, e de que modo o fogo poderia contribuir com a chamada "savanização" da Amazônia.

Downloads

Não há dados estatísticos.

Biografia do Autor

Marcus Vinicius Athaydes Liesenfeld, Universidade Federal do Acre

http://lattes.cnpq.br/0521283245281146

Gil Vieira, Instituto Nacional de Pesquisas da Amazônia

http://lattes.cnpq.br/9262271725044155

Ires Paula de Andrade Miranda, Instituto Nacional de Pesquisas da Amazônia

http://lattes.cnpq.br/1016048143175900

Referências

Ab´Saber, A. N. O domínio morfoclimático amazônico. Geomorfologia, n. 1, p. 1-12, 1966.

Ab´Saber, A. N. Os domínios morfoclimáticos na América do Sul: primeira aproximaçã o. Geomorfologia, n. 52, p. 1-21, 1977.

Adams, M. A. Mega-fires, tipping points and ecosystem services: managing forests and woodlands in an uncertain future. Forest Ecology and Management, v. 294, p. 250-261, 2013. DOI: 10.1016/j.foreco.2012.11.039.

Alencar, A. A. C. et al. Modeling forest understory fires in an eastern Amazonian landscape. Ecological Applications, v. 14, n. 4, p. 139-149, 2004. DOI: 10.1890/01-6029.

Alencar, A. et al. Forest understory fire in the Brazilian Amazon in ENSO and non-ENSO years: area burned and committed carbon emissions. Earth Interactions, v. 10, n. 6, 2006. DOI: 10.1175/EI150.1.

Alexander, M. E. Calculating and interpreting forest fire intensities. Canadian Journal of Botany-Revue Canadienne De Botanique, v. 60, n. 4, p. 349-357, 1982.

Aragão, L. O. E. C. & Shimabukuro, Y. O. The incidence of fire in Amazonian Forests with implications for REDD. Science, v. 328, n. 4, p. 1275-1278, 2010. DOI: 10.1126/science.1186925.

Armstrong, G. & Phillips, B. Fire History from Life-History: Determining the Fire Regime that a Plant Community Is Adapted Using Life- Histories. PloS one, v. 7, n. 2, p. 1-8, 2012. DOI: 10.1371/journal.pone.0031544.

Balch, J. K. et al. Effects of high-frequency understorey fires on woody plant regeneration in southeastern Amazonian forests. Philosophical Transactions of the Royal Society B: Biological Sciences, v. 368, n. 1619, p. 20120157-20120157, 2013. DOI: 10.1098/rstb.2012.0157.

Balch, J. K. et al. Size, species, and fire behavior predict tree and liana mortality from experimental burns in the Brazilian Amazon. Forest Ecology and Management,v. 261, n. 1, p. 68-77, 2011. DOI: 10.1016/j.foreco.2010.09.029.

Balfour, D. A. & Midgley, J. J. Fire induced stem death in an African acacia is not caused by canopy scorching. Austral Ecology, v. 31, p. 892-896, 2006. DOI: 10.1111/j.1442-9993.2006.01656.x.

Barlow, J. & Peres, C. A. Fire-mediated dieback and compositional cascade in an Amazonian forest. Philosophical transactions of the Royal Society of London. Series B, Biological sciences, v. 363, n. 1498, p. 1787-1794, 2008. DOI: 10.1098/rstb.2007.0013.

Barlow, J. et al. Morphological correlates of fire-induced tree mortality in a central Amazonian forest. Journal of Tropical Ecology, v. 19, n. 3, p. 291-299, 2003. DOI: 10.1017/s0266467403003328.

Barlow, J. et al. Large tree mortality and the decline of forest biomass following Amazonian wildfires. Ecology Letters, v. 6, n. 1, p. 6-8, 2002. DOI: 10.1046/j.1461-0248.2003.00394.x.

Barlow, J. et al. Fire scars on Amazonian trees : exploring the cryptic fire history of the Ilha de Maraca. Biotropica, v. 42, n. 4, p. 405-409, 2010. DOI: 10.1111/j.1744-7429.2010.00646.x.

Barlow, J. et al. Wildfires in bamboo-dominated Amazonian Forest: impacts on above-ground biomass and biodiversity. PloSone, v. 7, n. 3, p. e33373, 2012. DOI: 10.1371/journal.pone.0033373.

Bond, W. J. & Scott, A. C. Fire and the spread of flowering plants in the Cretaceous. New Phytologist, v. 188, p. 1137-1150, 2010. DOI: 10.1111/j.1469-8137.2010.03418.x.

Bond, W. J. & Keeley, J. E. Fire as a global "herbivore": the ecology and evolution of flammable ecosystems. Trends in ecology & evolution, v. 20, n. 7, p. 387-394, 2005. DOI: 10.1016/j.tree.2005.04.025.

Bond, W. J. & Midgley, J. J. Fire and the Angiosperm Revolutions. International Journal, v. 173, n. 6, p. 569-583, 2012. DOI: 10.1086/665819.

Bond, W. J. & Van Wilgen, B. W. Fire and Plants. London: Chapman & Hall, 1996. DOI: 10.1007/978-94-009-1499-5.

Bond, W. J. et al. The global distribution of ecosystems in a world without fire. New Phytologist, v. 165, p. 525-538, 2005. DOI: 10.1111/j.1469-8137.2004.01252.x.

Bova, A. S. & Dickinson, M. B. Linking surface-fire behavior, stem heating, and tissue necrosis. Canadian Journal of Forest Research, v. 35, p. 814-822, 2005. DOI: 10.1139/x05-004.

Bova, A. S. & Dickinson, M. B. Surface fires and stem mortality: physical connections. Second International Wildland Fire Ecology, v. 116, 2003.

Bowman, D. M. J. S. et al. The human dimension of fire regimes on Earth. Journal of Biogeography, v. 38, p. 2223-2236, 2011. DOI: 10.1111/j.1365-2699.2011.02595.x.

Bowman, D. et al. Fire in the Earth system. Science v. 324, n. 5926, p. 481-484, 2009. DOI: 10.1126/science.1163886.

Bradstock, R. A. A biogeographic model of fire regimes in Australia: current and future implications. Global Ecology and Biogeography, v. 19, n. 2, p. 145-158, 2010. DOI: 10.1111/j.1466-8238.2009.00512.x .

Brando, P. M. et al. Fire-induced tree mortality in a neotropical forest: the roles of bark traits, tree size, wood density and fire behavior. Global Change Biology, v. 18, n. 2, p. 630-641, 2012. DOI: 10.1111/j.1365-2486.2011.02533.x .

Brodie, J. et al. Climate change and tropical biodiversity: a new focus. Trends in Ecology & Evolution, v. 27, n. 3, p. 145-150, 2012. DOI: 10.1016/j.tree.2011.09.008.

Butler, B. W. & Dickinson, M. B. Tree Injury and Mortality in Fires: Developing Process-Based Models. Fire Ecology, v. 6, n. 1, p. 55-79, 2010. DOI: 10.4996/fireecology.0601055.

Carvalho Junior, J. et al. A tropical rainforest clearing experiment by biomass burning in the Manaus region. Atmospheric Environment, v. 29, n. 17, p. 2301-2309, 1995. DOI: 10.1016/1352-2310(95)00094-f .

Carvalho Junior, J. et al. Understorey fire propagation and tree mortality on adjacent areas to an Amazonian deforestation fire. International Journal of Wildland Fire, v. 19, n. 6, p. 795-799,2010. DOI: 10.1071/wf08047.

Carvalho, A. L. de et al. Bamboo-dominated forests of the Southwest Amazon: detection, spatial extent, life cycle length and flowering waves. . PloS one, v. 8, n. 1, p. 1-13. 2013. DOI: 10.1371/journal.pone.0054852.

Certini, G. Effects of fire on properties of forest soils: a review. Oecologia, v. 143, n. 1, p. 1-10. 2005. DOI: 10.1007/s00442-004-1788-8.

Chazdon, R. L. Tropical forest recovery: legacies of human impact and natural disturbances. Perspectives in Plant Ecology Evolution and Systematics, v. 6 n. 1/2, p. 51-71, 2003. DOI: 10.1078/1433-8319-00042.

Chuvieco, E. et al. Global characterization of fire activity: toward defining fire regimes from Earth observation data. Global Change Biology, v. 14, n. 7, p. 1488-1502, 2008. DOI: 10.1111/j.1365-2486.2008.01585.x.

Cirne, P. & Miranda, H. S. Effects of prescribed fires on the survival and release of seeds of Kielmeyera coriacea (Spr.) Mart. (Clusiaceae) in savannas of Central Brazil. Brazilian Journal of Plant Physiology, v. 20, n. 3, p. 197-204, 2008. DOI: 10.1590/s1677-04202008000300004.

Clarke, P. J. et al. Resprouting as a key functional trait: how buds, protection and resources drive persistence after fire. The New Phytologist, v. 197, n. 1, p. 19-35, 2013. DOI: 10.1111/nph.12001.

Cochrane, M. A. Fire science for rainforests. Nature, v. 421, p. 913-919, 2003. DOI: 10.1038/nature01437.

Cochrane, M. A. & Barber, C. P. Climate change, human land use and future fires in the Amazon. Global Change Biology v. 15, n. 3, p. 601-612, 2009. DOI: 10.1111/j.1365-2486.2008.01786.x.

Cochrane, M. A. & Laurance, W. F. W. Fire as a large-scale edge effect in Amazonian forests. Journal of Tropical Ecology, v. 1, n. 03, p. 311-325, 2002. DOI: 10.1017/s0266467402002237.

Cochrane, M. et al. Positive feedbacks in the fire dynamic of closed canopy tropical forests. Science, v. 284, n. 5421, p. 1832-1835, 1999. DOI: 10.1126/science.284.5421.1832.

Coe, M. T. et al. Deforestation and climate feedbacks threaten the ecological integrity of south-southeastern Amazonia. Philosophical transactions of the Royal Society B: Biological Science, v. 368, n. 1619, p. 20120155, 2013. DOI: 10.1098/rstb.2012.0155.

Conedera, M. et al. Reconstructing past fire regimes: methods, applications, and relevance to fire management and conservation. Quaternary Science Reviews, v. 28, n. 5-6, p. 555-576, 2009. DOI: 10.1016/j.quascirev.2008.11.005.

Costa, J. J. et al. On the Temperature Distribution Inside a Tree Under Fire Conditions. International Journal Of Wildland Fire, v. 1, n. 2, p. 87-96, 1991. DOI: 10.1071/wf9910087.

Cruz, M. G. et al. Predicting the ignition of crown fuels above a spreading surface fire. Part II: model evaluation. International Journal of Wildland Fire, v. 15, p. 61-72, 2006. DOI: 10.1071/wf05045.

Davies, G. M. & Legg, C. J. Fuel moisture thresholds in the flammability of Calluna vulgaris. Fire Technology, v. 47, n. 2, p. 421-436, 2011. DOI: 10.1007/s10694-010-0162-0.

Debano, L. The role of fire and soil heating on water repellency in wildland environments: a review. Journal of Hydrology, v. 231-232, p. 195-206, 2000. DOI: 10.1016/s0022-1694(00)00194-3.

Dickinson, M. B. Heat transfer and vascular cambium necrosis in the boles of trees during surface fires. In: Viegas, D. X. (Ed.). Proceedings forest fire research & wildland fire safety. Rotterdam: Millpress, 2002.

Dickinson, M. B. & Johnson, E. A. Temperature-dependent rate models of vascular cambium cell mortality. Canadian Journal of Forest Research, v. 34, p. 546-559, 2004. DOI: 10.1139/x03-223.

Dickinson, M. B. & Johnson, E. A. Fire effects on trees. In: Johnson, E. A. & Miyanishi, K. (Ed.). Forest fires: behavior and ecological effects. San Diego: Academic Press, 2001. p. 477-526.

Dickinson, M. B. et al. Vascular cambium necrosis in forest fires: using hyperbolic temperature regimes to estimate parameters of a tissue-response model. Australian Journal of Botany, v. 52, p. 757-763, 2004. DOI: 10.1071/bt03111.

Doerr, S. H. & Shakesby, R. A. Fire and the Land Surface. In: Belcher, C. M. (Ed.). Fire phenomena and the earth system: an interdisciplinary guide to fire science. Chicester: Wiley-Blackwell, 2013. 350 p.

Dri, A. B. N. et al. Origin of trunk damage in West African savanna trees: the interaction of fire and termites. Journal of Tropical Ecology, v. 27, n. 03, p. 269-278, 2011. DOI: 10.1017/s026646741000074x.

Durany, J. et al. Physical modelling and numerical simulation of soil heating under forest fire conditions. In: FOREST fire research: abstracts of the VI International Conference on Forest Fire Research, 2010, Coimbra. Coimbra: Associação para o Desenvolvimento da Aerodinâmica Industrial, 2010.

Fearnside, P. Tropical deforestation and global warming. Science, v. 312, n. 5777, p. 1137c-1137c. 2006. DOI: 10.1126/science.312.5777.1137c.

Fearnside, P. M. Brazil´s evolving proposal to control deforestation: Amazon still at risk. Environmental Conservation, v. 36, n. 03, p. 177, 2009. DOI: 10.1017/s0376892909990294.

Flannigan, M. D. Implications of changing climate for global wildland fire. International Journal of Wildland Fire, v. 6, n. 5, p. 13, 2009. DOI: 10.1071/wf08187.

Gill, A. M. Stems and fires. In: Gartner. B. (Ed.). Plant stems: physiology and functional morphology. New York: Academic Press, 1995. p. 323-342.

Gill, A. M. & Ashton, D. H. The role of bark type in relative tolerance to fire of three central Victorian Eucalypts. Australian Journal of Botany, v. 16, p. 491-498, 1968. DOI: 10.1071/bt9680491.

Gill, M. & Allan, G. Large fires, fire effects and the fire-regime concept. International Journal Of Wildland Fire, v. 17, p. 688-695, 2008. DOI: 10.1071/wf07145.

Govender, N. et al. The effect of fire season, fire frequency, rainfall and management on fire intensity in savanna vegetation in South Africa. Journal of Applied Ecology, v. 43, n. 4, p. 748-758, 2006. DOI: 10.1111/j.1365-2664.2006.01184.x.

Gutsell, S. L. & Johnson, E. A. How fire scar are formed: coupling a disturbance process to its ecological effect. Canadian Journal of Forest Research, v. 26, p. 166-174, 1996. DOI: 10.1139/x26-020.

He, T. et al. Banksia born to burn. The New phytologist, v. 191, n. 1, p. 184-196, 2011. DOI: 10.1111/j.1469-8137.2011.03663.x.

Hicke, J. A. et al. Effects of bark beetle-caused tree mortality on wildfire. Forest Ecology and Management, v. 271, p. 81-90, 2012. DOI: /10.1016/j.foreco.2012.02.005.

Higgins, S. I. et al. Fire, resprouting and variability: a recipe for grass-tree coexistence in savanna. Journal of Ecology, v. 88, n. 2, p. 213-229, 2000. DOI: 10.1046/j.1365-2745.2000.00435.x.

Hirota, M. et al. Global resilience of tropical forest and Savanna to critical transitions. Science, v. 334, p. 232-234, 2011. DOI: 10.1126/science.1210657.

Hoffmann, W. A. Regional feedbacks among fire, climate, and tropical deforestation. Journal of Geophysical Research, v. 108, n. 23, p. 1-11, 2003. DOI: 10.1029/2003jd003494.

Hoffmann, W. & Solbrig, O. T. The role of topkill in the differential response of savanna woody species to fire. Forest Ecology and Management, v. 180, n. 1-3, p. 273-286, 2003. DOI: 10.1016/s0378-1127(02)00566-2.

Holdsworth, A. R. & Uhl, C. Fire in Amazonian selectively logged rain forest and the potential for fire reduction. Ecological Applications, v. 7, n. 2, p. 713-725, 1997. DOI: 10.2307/2269533.

Hood, S. M. et al. Using bark char codes to predict post-fire cambium mortality. Fire Ecology, v. 4, n. 1, p. 57-73, 2008. DOI: 10.4996/fireecology.0401057.

Jones, J. L. et al. Prediction and measurement of thermally induced cambial tissue necrosis in tree stems. International Journal of Wildland Fire, v. 15, p. 3-17, 2006. DOI: 10.1071/wf05017.

Kavanagh, K. L. et al. A way forward for fire-caused tree mortality prediction: modeling a physiological consequence of fire. Fire Ecology, v. 6, n. 1, 80-94, 2010. DOI: 10.4996/fireecology.0601080.

Keeley, J. E. Fire intensity, fire severity and burn severity: a brief review and suggested usage. International Journal of Wildland Fire, v. 18, n. 1, p. 116, 2009. DOI: 10.1071/wf07049.

Keeley, J. E. et al. Fire as an evolutionary pressure shaping plant traits. Trends in Plant Science, v. 6, n. 8, p. 406-411, 2011. DOI: 10.1016/j.tplants.2011.04.002.

Krawchuk, M. A. & Moritz, M. A. Constraints on global fire activity vary across a resource gradient. Ecology, v. 92, n. 1, p. 121-132, 2011. DOI: 10.1890/09-1843.1.

Krawchuk, M. A. et al. Global pyrogeography: the current and future distribution of wildfire. PloS one, v. 4, n. 4, p. 1-12, 2009. DOI: 10.1371/journal.pone.0005102.

Kremens, R. L. et al. Fire metrology: current and future directions in physics-based methods. Fire Ecology, v. 6, n. 1, p. 13-35, 2010. DOI: 10.4996/fireecology.0601013.

Krieger Filho, C. G. et al. Physical model for surfasse forest fire predictions in Amazonia. In: MEDITERRANEAN COMBUSTION SYMPOSIUM, 7., 2011, Sardinia. Proceedings... Philadelphia: Taylor et Francis, 2012.

Laurance, W. F. Positive feedbacks among forest fragmentation, drought, and climate change in the Amazon. Conservation Biology, v. 14, n. 6, p. 1538-1535, 2001. DOI: 10.1046/j.1523-1739.2001.01093.x.

Laurance, W. F. et al. The fate of Amazonian forest fragments: a 32-year investigation. Biological Conservation, v. 144, n. 1, p. 56-67, 2011. DOI: 10.1016/j.biocon.2010.09.021.

Lawes, M. J. et al. Bark thickness determines fire resistance of selected tree species from fire-prone tropical savanna in north Australia. Plant Ecology, v. 212, n. 12, p. 2057-2069, 2011. DOI: 10.1007/s11258-011-9954-7.

Liesenfeld, M. V. A. Efeitos do fogo de superfície experimental na ecologia de palmeiras (Arecaceae) de sub-bosque em uma floresta na Amazônia ocidental. 2014. 214 f. Tese (Doutorado) - Instituto Nacional de Pesquisas da Amazônia, Manaus.

Lima, A. et al. Análise da estrutura e do estoque de fitomassa de uma floresta secundária da região de Manaus AM, dez anos após corte raso seguido de fogo. Acta Amazonica, v. 37, n. 1, p. 49-54, 2007. DOI: /10.1590/s0044-59672007000100005.

Liu, Y. et al. Wildland fire emissions, carbon, and climate: Wildfire - climate interactions. Forest Ecology and Management, v. 317, n. 1, p. 80-96, 2014. DOI: 10.1016/j.foreco.2013.02.020.

Malhi, Y. et al. Exploring the likelihood and mechanism of a climatechange-induced dieback of the Amazon rainforest. Proceedings of the National Academy of Sciences, v. 106, p. 20610-20615, 2009. DOI: 10.1073/pnas.0804619106.

Marengo, J. A. et al. Riscos das mudanças climáticas no Brasil. São José dos Campos: Instituto Nacional de Pesquisas Espaciais, 2011, 56 p.

Massman, W. J. et al. Advancing investigation and physical modeling of first-order fire effects on soils. Fire Ecology, v. 6, n. 1, p. 36-54, 2010. DOI: 10.4996/fireecology.0601036.

Meggers, B. J. Archeological Evidence for the Impact of Mega-Niño Events on Amazonia During the past two millenia. Climate Change, v. 28, p. 321-338, 1994. DOI: 10.1007/bf01104077.

Michaletz, S.& Johnson, E. How forest fires kill trees: A review of the fundamental biophysical processes. Scandinavian Journal of Forest Research, v. 22, n. 6, p. 500-515. 2007. DOI: 10.1080/02827580701803544.

Michaletz, S. T. & Johnson, E. A. A heat transfer model of crown scorch in forest fires. Canadian Journal of Forest Research, v. 36, n. 11, p. 2839-2851, 2006. DOI: 10.1139/x06-158.

Michaletz, S. T. & Johnson, E. A. A biophysical process model of tree mortality in surface fires. Canadian Journal of Forest Research, v. 38, n. 7, p. 2013-2029, 2008. DOI: 10.1139/x08-024.

Michaletz, S. T. et al. Moving beyond the cambium necrosis hypothesis of post-fire tree mortality: cavitation and deformation of xylem in forest fires. New Phytologist, v. 194, n. 1, p. 254-263, 2012. DOI: 10.1111/j.1469-8137.2011.04021.x.

Midgley, J. J. et al. How do fires kill plants? The hydraulic death hypothesis and Cape Proteaceae "fire-resisters". South African Journal of Botany, v. 77, n. 2, p. 381-386, 2011. DOI: 10.1016/j.sajb.2010.10.001.

Miranda, H. S. et al. Comportamento do fogo em queimadas de campo sujo. In: CONGRESSO DE ECOLOGIA DO BRASIL, 3., 1996, Brasília, DF. Manejo de ecossistemas e mudancas globais: resumos. Brasília, DF: UnB, 1996. p. 469-470.

Morton, D. C. et al. Understorey fire frequency and the fate of burned forests in southern Amazonia. Philosophical transactions of the Royal Society of London. Series B, Biological sciences, v. 368, n. 1619, p. 20120163, 2013. DOI: 10.1098/rstb.2012.0163.

Nepstad, D. et al. Road paving, fire regime feedbacks, and the future of Amazon forests. Forest Ecology and Management, v. 154, p. 395-407, 2001. DOI: 10.1016/s0378-1127(01)00511-4.

Nepstad, D. et al. Large-scale impoverishment of Amazonian forests by logging and fire. Nature, v. 1405, n. 1997, p. 1997-2000, 1999.

Oliveira, M. V. N. et al. Forest natural regeneration and biomass production after slash and burn in a seasonally dry forest in the Southern Brazilian Amazon. Forest Ecology and Management, v. 261, n. 9, p. 1490-1498, 2011. DOI: 10.1016/j.foreco.2011.01.014.

Parisien, M. A. et al. Scale-dependent controls on the area burned in the boreal forest of Canada, 1980-2005. Ecological Applications, v. 21, n. 3, p. 789-805, 2011. DOI: 10.1890/10-0326.1.

Pausas J. G. Incendios forestales. Catarata-CSIC. 2012. DOI: 10.7818/ecos.210.21-3.20.

Pausas, J. G. & Keeley, J. E. A burning story: the role of fire in the history of life. BioScience, v. 59, n. 7, p. 593-601, 2009. DOI: 10.1525/bio.2009.59.7.10.

Pausas, J. G. & Moreira, B. Flammability as a biological concept. New Phytologist, v. 194, p. 610-613, 2012. DOI: 10.1111/j.1469-8137.2012.04132.x.

Pausas, J. G. & Ribeiro, E. The global fire-productivity relationship. Global Ecology and Biogeography, v. 22, n. 6, p. 728-736, 2013. DOI: 10.1111/geb.12043.

Peres, C. A. Ground fires as agents of mortality in a Central Amazonian Forest. Journal of Tropical Ecology, v. 15, n. 4, p. 535-541, 1999. DOI: 10.1017/s0266467499000991.

Phillips, O. L. et al. Resilience of southwestern Amazon forests to anthropogenic edge effects. Conservation biology, v. 20, n. 6, p. 1698-1710, 2006. DOI: 10.1111/j.1523-1739.2006.00523.x.

Pinard, M. Tree mortality and vine proliferation following a wildfire in a subhumid tropical forest in eastern Bolivia. Forest Ecology and Management, v. 116, n. 1-3, p. 247-252, 1999. DOI: 10.1016/s0378-1127(98)00447-2.

Potter, B. E. & Andresen, J. A. A finite-difference model of temperatures heat flow within a tree stem. Canadian Journal of Forest Research, v. 32, p. 548-555, 2002. DOI: 10.1139/x01-226.

Poulos, H. M. et al. Human influences on fire regimes and forest structure in the Chihuahuan Desert Borderlands. Forest Ecology and Management, v. 298, p. 1-11, 2013. DOI: 10.1016/j.foreco.2013.02.014.

Ray, D. et al. Micrometeorological and canopy controls of fire susceptibility in a Forested Amazon Landscape. Ecological Applications, v. 15, n. 5, p. 1664-1678, 2005. DOI: 10.1890/05-0404 .

Rein, G. et al. The severity of smouldering peat fires and damage to the forest soil. Catena, v. 74, n. 3, p. 304-309, 2008. DOI: 10.1016/j.catena.2008.05.008.

Rizzini, C. T. Nota prévia sobre a divisão fitogeográfica do Brasil. Rio de Janeiro: IBGE, 1963.

Rundel, P. W. Fire as an ecological factor. In: Lange, O. L. (Ed.). Physiological plant ecology I. Berlin: Springer Verlag, 1981.

Safford, H. D. et al. Effects of fuel treatments on fire severity in an area of wildland - urban interface, Angora Fire, Lake Tahoe Basin, California. Forest Ecology and Management, v. 285, n. 5, p. 773-787, 2009. DOI: 10.1126/science.227.4682.53.

Sah, J. P. et al. Tree mortality following prescribed fire and a atorm aurge event in slash pine (Pinus elliottii var. densa ) forests in the Florida Keys , USA. International Journal of Forestry Research, v. 2010, 2010. DOI: 10.1155/2010/204795.

Sanford, R. L., et al. Amazon rain-forest fires. Science, v. 227, n. 4682, p. 53-55, 1985. DOI: 10.1126/science.227.4682.53.

Shakesby, R. A. & Walsh, R. P. D. Temporal changes in sediment, organic matter and nutrient losses following an experimental fire in Atlantic-Mediterranean heath , central Portugal. In: FOREST fire research: abstracts of the VI International Conference on Forest Fire Research, 2010, Coimbra. Coimbra: Associação para o
Desenvolvimento da Aerodinâmica Industrial, 2010.

Silva, S. S. da et al. DinaÌ‚mica dos inceÌ‚ndios florestais no Estado do Acre nas décadas de 90 e 00. In: SIMPÓSIO BRASILEIRO DE SENSORIAMENTO REMOTO, 16., 2013, Foz do Iguaçú. Anais...São José dos Campos: INPE, 2013. p. 8799-8806.

Silvério, D. V. et al. Testing the Amazon savannization hypothesis: fire effects on invasion of a neotropical forest by native cerrado and exotic pasture grasses. Philosophical transactions of the Royal Society of London B: Biological sciences, v. 368, n. 1619, p. 20120427, 2013. DOI: 10.1098/rstb.2012.0427.

Silvestrini, R. A. et al. Simulating fire regimes in the Amazon in response to climate change and deforestation. Ecological Applications, v. 21, n. 5, p. 1573-1590, 2011. DOI: 10.1890/10-0827.1.

Simard, S. Fire severity, changing scales, and how things hang together. International Journal of Wildland Fire, v. 1, n. 1, p. 1-23, 1991. DOI: 10.1071/wf9910023

Smith, K. T. & Sutherland, E. K. Terminology and biology of fire scars in selected central hardwoods. Tree-Ring Research v. 57, n. 2, p. 141-147, 2001.

Smith, M. & Nelson, B. W. Fire favours expansion of bamboodominated forests in the south-west Amazon. Journal of Tropical Ecology, v. 27, n. 01, 59-64, 2010. DOI: 10.1017/s026646741000057x.

Starker, T. J. Fire Resistance in the Forest. Journal of Forestry, v. 32, p. 462-467, 1934.

Uhl, C. & Kauffman, J. B. Deforestation, fire susceptibility, and potential tree responses to fire in the Eastern Amazon. Ecology, v. 71, n. 2, 437-449, 1990. DOI: 10.2307/1940299.

Uhl, C. et al. Fire in the Venezuelan Amazon 2: environmental conditions fire in the Venezuelan necessary for forest fires in the evergreen rainforest of Venezuela. Oikos, v. 53, n. 2, p. 176-184, 1988. DOI: 10.2307/3566060.

Van Der Weide, B. L. & Hartnett, D. C. Fire resistance of tree species explains historical gallery forest community composition. Forest Ecology and Management, v. 261, n. 9, p. 1530-1538, 2011. DOI: 10.1016/j.foreco.2011.01.044.

Van Mantgem, P. & Schwartz, M. Bark heat resistance of small trees in Californian mixed conifer forests: testing some model assumptions. Forest Ecology and Management, v. 178, n. 3, p. 341-352, 2003. DOI: 10.1016/s0378-1127(02)00554-6.

Vasconcelos, S. S. et al. Forest fires in southwestern Brazilian Amazonia: estimates of area and potential carbon emissions. Forest Ecology and Management, v. 291, p. 199-208, 2013. DOI: 10.1016/j.foreco.2012.11.044.

Veloso, H. P. Contribuição à fitogeografia do Brasil II. A estrutura da vegetação como elemento de classificação dos clímaces brasileiros. Anuário Brasileiro de Economia Florestal, v. 17, p. 123-134, 1966.

Veloso, H. P. et al. Classificação da vegetação brasileira, adaptada a um sistema universal. Rio de Janeiro: Ministério da Economia, Fazenda e Planejamento, Fundação Instituto Brasileiro de Geografia e Estatística, Diretoria de Geociências, Departamento de Recursos Naturais e Estudos Ambientais, 1991.

Verdú, M. et al. Burning phylogenies: fire, molecular evolutionary rates, and diversification. Evolution; international journal of organic evolution, v. 61, n. 9, p. 2195-2204, 2007. DOI: 10.1111/j.1558-5646.2007.00187.x.

Vesk, P. A. & Westoby, M. Sprouting ability across diverse disturbances and vegetation types worldwide. Journal of Ecology, v. 82, n. 2, p. 911-320, 2004. DOI: 10.1111/j.0022-0477.2004.00871.x.

Wagner, C. E. Height of Crown Scorch in Forest Fires. Canadian Journal of Forest Research, v. 3, p. 373-378, 1973. DOI: 10.1139/x73-055.

Walter, H. Vegetação e zonas climáticas. São Paulo: EPU, 1986. 325 p.

Yaussy, D. A. et al. Prescribed surface-fire tree mortality in Southern Ohio: equations based on thermocouple probe temperatures. In: Yaussy, D. A. (Ed.). Proceedings: 14th Central Hardwood Forest Conference, 2004, Wooster, Ohio. Newtown Square: U.S. Dept. of Agriculture, Forest Service, Northeastern Research Station, [2004].

Downloads

Publicado

30-12-2016

Como Citar

LIESENFELD, Marcus Vinicius Athaydes; VIEIRA, Gil; MIRANDA, Ires Paula de Andrade. Ecologia do fogo e o impacto na vegetação da Amazônia. Pesquisa Florestal Brasileira, [S. l.], v. 36, n. 88, p. 505–517, 2016. DOI: 10.4336/2016.pfb.36.88.1222. Disponível em: https://pfb.cnpf.embrapa.br/pfb/index.php/pfb/article/view/1222. Acesso em: 28 mar. 2024.

Edição

Seção

Artigos de Revisão

Artigos Semelhantes

1 2 3 4 5 6 7 8 9 10 > >> 

Você também pode iniciar uma pesquisa avançada por similaridade para este artigo.