Production and performance of physically activated carbon from Bambusa vulgaris

Authors

DOI:

https://doi.org/10.4336/2019.pfb.39e201801668

Keywords:

Adsorbents, Bamboo, Resource management

Abstract

Activated carbon (AC) was produced from Bambusa vulgaris to evaluate its potential of methylene blue dye (MB) adsorption. AC was prepared by direct physical activation, using the water vapor as activating agent. It was characterized considering the gravimetric yield of AC, the pH point of zero charge, Boehm titration method, surface area, volume and pore diameter analysis and superficial morphology. The application of AC was performed with kinetic studies and adsorption isotherms by the Langmuir and Freundlich isotherm models. The material produced presented surface area of 684.69 m2 g-1, pH point of zero chargeof 7.32 and predominance of acidic groups on their surface. By the micrographs analysis it was possible to verify the development of the material porosity due to activation. The maximum adsorption capacity for the MB dye was 301.07 mg g-1 the Langmuir model presented the best adjustment. The AC obtained from Bambusa vulgaris presented excellent texture and adsorption properties are it was very efficient in MB dye adsorption.

Downloads

Download data is not yet available.

Author Biographies

Rayssa de Medeiros Morais, Universidade Federal Rural do Rio de Janeiro

http://lattes.cnpq.br/6301026648112484

Gregório Mateus Santana, Universidade Federal Rural do Rio de Janeiro

http://lattes.cnpq.br/6915291497365306

Roberto Carlos Costa Lelis, Universidade Federal Rural do Rio de Janeiro

http://lattes.cnpq.br/5175502780570226

Juarez Benigno Paes, Universidade Federal do Espirito Santo

http://lattes.cnpq.br/3454401627877927

Maria Vanessa Egger Schueler, Universidade Federal Rural do Rio de Janeiro

http://lattes.cnpq.br/8331234884998853

Fernanda Lago Morbeck, Universidade Federal Rural do Rio de Janeiro

http://lattes.cnpq.br/2198578208473257

References

Andrade, R. C. et al. Buriti palm stem as a potential renewable source for activated carbon production. Environmental Technology & Innovation, v. 3, p. 28-34, 2015. DOI: 10.1016/j.eti.2015.02.002.
Attia, A. A. et al. Adsorption of chromium ion (VI) by acid activated carbon. Brazilian Journal of Chemical Engineering, v. 27, n. 1, p. 183-193, 2010. DOI: 10.1590/S0104-66322010000100016.
Avelar, F. F. et al. The use of piassava fibers (Attalea funifera) in the preparation of activated carbon. Bioresource Technology, v. 101, n. 12, p. 4639-4645, 2010. DOI: 10.1016/j.biortech.2010.01.103.
Bautista-Toledo, I. et al. Bisphenol A removal from water by activated carbon: effects of carbon characteristics and solution chemistry. Environmental Science and Technology, v. 39, n. 16, p. 6246-6250, 2005. DOI: 10.1021/es0481169.
Bhatnagar, A. et al. An overview of the modification methods of activated carbon for its water treatment applications. Chemical Engineering Journal, v. 219, p. 499-511, 2013. DOI: 10.1016/j.cej.2012.12.038.
Boehm, H. P. Surface chemical characterization of carbons from adsorption studies. In: Bottani, E. J. & Tascón, J. M. D. (Ed.). Adsorption by carbons. [S.l]: Elsevier Science, 2008. p. 301-327.
Boehm, H. P. Surface oxides on carbon and their analysis: a critical assessment. Carbon, v. 40, n. 2, p. 145-149, 2002. DOI: 10.1016/S0008-6223(01)00165-8.
Borges, W. M. S. et al. Carvão ativado de resíduo de madeira de candeia: produção, caracterização e avaliação do potencial adsortivo. Revista Virtual de Química, v. 7, n. 6, p. 1952-1967, 2015. DOI: 10.5935/1984-6835.20150115.
Brum, S. S. et al. Preparação e caracterização de carvão ativado produzido a partir de resíduos do beneficiamento do café. Quimica Nova, v. 31, n. 5, p. 1048-1052, 2008.
Bueno, C. I. D. C. & Carvalho, W. A. Remoção de chumbo (II) em sistemas descontínuos por carvões ativados com ácido fosfórico e com vapor. Quimica Nova, v. 30, n. 8, p. 1911-1918, 2007.
Cherifi, H. et al. Kinetic studies on the adsorption of methylene blue onto vegetal fiber activated carbons. Applied Surface Science, v. 282, p. 52-59, 2013. DOI: 10.1016/j.apsusc.2013.05.031.
Costa, P. D. et al. Produção, caracterização e aplicação de carvão ativado de casca de nozes para adsorção de azul de metileno. Revista Virtual de Química, v. 7, n. 4, p. 1272-1285, 2015. DOI: 10.5935/1984-6835.20150070.
Danish, M. & Ahmad, T. A review on utilization of wood biomass as a sustainable precursor for activated carbon production and application. Renewable and Sustainable Energy Reviews, v. 87, p. 1-21, 2018. DOI: 10.1016/j.rser.2018.02.003.
Fang, C. H. et al. An overview on bamboo culm flattening. Construction and Building Materials, v. 171, p. 65-74, 2018. DOI: 10.1016/j.conbuildmat.2018.03.085.
González-García, P. Activated carbon from lignocellulosics precursors: a review of the synthesis methods, characterization techniques and applications. Renewable and Sustainable Energy Reviews, v. 82, n. 1, p. 1393-1414, 2017. DOI: 10.1016/j.rser.2017.04.117.
González, P. G. & Pliego-Cuervo, Y. B. Adsorption of Cd (II), Hg (II) and Zn (II) from aqueous solution using mesoporous activated carbon produced from Bambusa vulgaris striata. Chemical Engineering Research and Design, v. 92, n. 11, p. 2715-2724, 2014. DOI: 10.1016/j.cherd.2014.02.013.
Lobovikov, M. et al. World bamboo resources: a thematic study prepared in the framework of the global forest resources assessment 2005. Rome: FAO, 2007.
Nobre, J. C. R. et al. Produção de carvão ativado de resíduo madeireiro da região Amazônica. Scientia Forestalis, v. 43, n. 108, p. 895-906, 2015. DOI: 10.18671/scifor.v43n108.14.
Pallarés, J. et al. Production and characterization of activated carbon from barley straw by physical activation with carbon dioxide and steam. Biomass and Bioenergy, v. 115, p. 64-73, 2018. DOI: 10.1016/j.biombioe.2018.04.015.
Pezoti, O. et al. Adsorption studies of methylene blue onto ZnCl2-activated carbon produced from buriti shells (Mauritia flexuosa L.). Journal of Industrial and Engineering Chemistry, v. 20, n. 6, p. 4401-4407, 2014. DOI: 10.1016/j.jiec.2014.02.007.
Rashidi, N. A. & Yusup, S. A review on recent technological advancement in the activated carbon production from oil palm wastes. Chemical Engineering Journal, v. 314, p. 277-290, 2017. DOI: 10.1016/j.cej.2016.11.059.
Rezma, S. et al. Physically activated microporous carbon from a new biomass source: date palm petioles. Comptes Rendus Chimie, v. 20, n. 9-10, p. 881-887, 2017. DOI: 10.1016/j.crci.2017.05.003.
Skaar, C. Wood-water relations. New York: Springer, 1988.
Sales, P. F. et al. Produção, caracterização e aplicação do carvão ativado obtido a partir do sabugo de milho: a busca pelo reaproveitamento de um resíduo agroindustrial. Revista Virtual de Química, v. 7, n. 4, p. 1174-1188, 2015.
Stavropoulos, G. G. & Zabaniotou, A. A. Production and characterization of activated carbons from olive-seed waste residue. Microporous and Mesoporous Materials, v. 82, n. 1, p. 79-85, 2005. DOI: 10.1016/j.micromeso.2005.03.009.
Teixeira, V. G. et al. Principais métodos de caracterização da porosidade de resinas à base de divinilbenzeno. Química Nova, v. 24, n. 6, p. 808-818, 2001. DOI: 10.1590/S0100-40422001000600019.
Tomazello, M. F. & Azzini, A. Estrutura anatômica, dimensões das fibras e densidade básica de colmos de Bambusa vulgaris Schrad. Instituto de Pesquisas Estudos Florestais, n. 36, p. 43-50, 1987.
Van-Dam, J. E. G. et al. Bamboo production for industrial utilization. In: Alexopoulou, E. (Ed.). Perennial grasses for bioenergy and bioproducts. [S.l]: Academic Press, 2018. p. 175-216.

Published

2019-03-28

How to Cite

MORAIS, Rayssa de Medeiros; SANTANA, Gregório Mateus; COSTA LELIS, Roberto Carlos; PAES, Juarez Benigno; SCHUELER, Maria Vanessa Egger; MORBECK, Fernanda Lago. Production and performance of physically activated carbon from Bambusa vulgaris. Pesquisa Florestal Brasileira, [S. l.], v. 39, n. 1, 2019. DOI: 10.4336/2019.pfb.39e201801668. Disponível em: https://pfb.cnpf.embrapa.br/pfb/index.php/pfb/article/view/1668. Acesso em: 17 may. 2024.

Issue

Section

Articles

Most read articles by the same author(s)

Similar Articles

<< < 8 9 10 11 

You may also start an advanced similarity search for this article.