Strategies of two tropical woody species to tolerate salt stress

Authors

  • Bruno Melo Lustosa Universidade Federal de Pernambuco
  • Lígia Gomes Ferreira Souza Universidade Federal de Pernambuco
  • Gabriella Frosi Universidade Federal de Pernambuco
  • Hiram Marinho Falcão Universidade Federal de Pernambuco
  • Silvia Pereira Universidade Federal de Pernambuco
  • Marciel Teixeira Oliveira Universidade Federal de Pernambuco
  • Mauro Guida Santos Universidade Federal de Pernambuco

DOI:

https://doi.org/10.4336/2017.pfb.37.89.1332

Keywords:

Biochemical analysis, Leaf gas exchange, Leaf water potential

Abstract

This study aimed to evaluate the leaf primary metabolism in two woody species, Sterculia foetida and Bombacopsis glabra. Both species have seeds rich in oil and they are largely found in regions with irregularities in water availability. Seedlings were grown in a greenhouse from seeds. At 140 days after emergence, 50% of the plants were subjected to salt stress for 23 days, daily receiving 100 mM of NaCl solution. In both species, leaf stomata conductance and water potential decreased quickly under salt stress. The two species showed different strategies in photosynthetic pigment concentration and components of nitrogen metabolism. S. foetida kept the pigment concentration unchanged after 23 days of stress, while B. glabra increased concentration of chlorophyll a and carotenoids. S. foetida showed a high leaf concentration of K+ in stressed plants and a Na+/K+ ratio without differences when compared to control. Thus, S. foetida presented a better ionic balance, while B. glabra invested in photoprotection. Therefore, both species present potential to be planted in Brazilian Northeast, where water deficit and salt stress are challenging for annual crops.

Downloads

Download data is not yet available.

References

Aguiar Neto, A. O. et al. Characteristics chemical and soil salinization in the Irrigated District of California, SE, Brazil. Ciência Rural, v. 37, p. 1640-1645, 2007. DOI: 10.1590/S0103-84782007000600021.

Asada, K. The water-water cycle in chloroplasts: scavenging of active oxygens and dissipation of excess photons. Annual Review of Plant Physiology and Plant Molecular Biology, v. 50, p. 601-639, 1999. DOI: 10.1146/annurev.arplant.50.1.601.

Beltrão, N. E. de M. Agronegócio das oleaginosas no Brasil. Informe Agropecuário, v. 26, n. 229, p. 18, 2005.

Baker, N. R. Chlorophyll fluorescence: a probe of photosynthesis in vivo. Annual Review of Plant, v. 59, p. 89-113, 2008. DOI: 10.1146/annurev.arplant.59.032607.092759.

Benlloch-González, M. et al. K+ starvation causes a differential effect on shoot and root K+ (Rb+) uptake in sunflower plants. Scientia Horticulturae, v. 146, p. 153-158, 2012. DOI: 10.1016/j.scienta.2012.08.030.

Bindhu, C. et al. Preparation and evaluation of biodiesel from Sterculia foetida seed oil. Journal of the American Oil Chemists´ Society, v. 89, p. 891-896, 2012. DOI: 10.1007/s11746-011-1969-7.

Blumwald, E. et al. Sodium transport and salt tolerance in plant cells. Current Opinion of Cell Biology, v. 12, p. 76-112, 2000. DOI: 10.1016/S0005-2736(00)00135-8.

Bradford, M. M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Analytical Biochemistry, v. 72, p. 248-254, 1976. DOI: 10.1016/0003-2697(76)90527-3.

Campbell, G. S. & Norman, J. M. An introduction to environmental biophysics. Nova York: Springer-Verlag, 1998. 286 p.

Chaves, M. H. et al. Chemical Characterization and Stability of the Bombacopsis glabra Nut Oil. Food and Public Health, v. 2, p. 104-109, 2012. DOI: 10.5923/j.fph.20120204.04.

Chaves, M. M. et al. Photosynthesis under drought and salt stress: regulation mechanisms from whole plant to cell. Annals of Botany, v. 103, p. 551-560, 2009. DOI: 10.1093/aob/mcn125.

Clarkson, D. T. & Hanson, J. B. The mineral nutrition of higher plants. Annual Review of Plant Physiology, v. 31, p. 239-298, 1980. DOI: 10.1146/annurev.pp.31.060180.001323.

Deilen, U. et al. Plant salt-tolerance mechanisms. Trends in Plant Science, v. 19, p. 371-379, 2014. DOI: 10.1016/j.tplants.2014.02.001.

Dubois, M. et al. Colorimetric method for determination of sugars and related substances. Analytical Chemistry, v. 28, p. 350-356, 1956. DOI: 10.1021/ac60111a017.

Esteves, B. S. & Suzuki, M. S. Efeito da salinidade sobre as plantas. Oecologia Brasilienses, v. 12, p. 662-679, 2008.

Evelin, H. et al. Arbuscular mycorrhizal fungi in alleviation of salt stress: a review. Annals of Botany, v. 104, p. 1263-1280, 2009. DOI: 10.1093/aob/mcp251.

Farquhar, G. D. & Sharkey, T. D. Stomatal conductance and photosynthesis. Annual Review of Plant Physiology, v. 33, p. 317-345, 1982. DOI: 10.1146/annurev.pp.33.060182.001533.

Feng, G. et al. Improved tolerance of maize plants to salt stress by arbuscular mycorrhiza is related to higher accumulation of soluble sugars in roots. Mycorrhiza, v. 12, p. 185-190, 2002. DOI: 10.1007/s00572-002-0170-0.

Flexas, J. et al. Rapid variations of mesophyll conductance in response to changes in CO2 concentration around leaves. Plant, Cell and Environment, v. 30, p. 1284-1298, 2007. DOI: 10.1111/j.1365-3040.2007.01700.x.

Flexas, J. et al. Water stress induces different levels of photosynthesis and electron transport rate regulation in grapevines. Plant, Cell and Environment, v. 22, p. 39-48, 1999. DOI: 10.1046/j.1365-3040.1999.00371.x.

FAO. Advances in the assessment and monitoring of salinization and status of biosaline agriculture. World Soil Resources Reports, n. 104. Rome, 2009. 73 p.

Freire, A. L. O. & Miranda, J. R. P. Crescimento e acúmulo de cátions em plantas de moringa mantidas em solos salinos. Pesquisa Florestal Brasileira, v. 32, p. 45-51, 2012. DOI: 10.4336/2012.pfb.32.69.45.

Gupta, B. & Huang, B. Mechanism of salinity tolerance in plants: Physiological, biochemical, and molecular characterization. International Journal of Genomics, v. 2014, p. 1-18, 2014. DOI: 10.1155/2014/701596.

Heber, U. Irrungen, Wirrungen? The Mehler reaction in relation to cyclic electron transport in C3 plants. Photosynthesis Research, v. 73, p. 223-231, 2002. DOI: 10.1023/A:102045941698

Heber, U. et al. Protection of the photosynthetic apparatus against damage by excessive illumination in homoiohydric leaves and poikilohydric mosses and lichens. Journal of Experimental Botany, v. 52, p. 1999-2006, 2001. DOI: 10.1093/jexbot/52.363.1999.

Hoagland, D. R. & Arnon, D. I. The water culture method of growing plants without soil. Berkeley, CA: University of California, 1950. 32 p.

Hossain, M. S. & Dietz, K. J. Tuning of redox regulatory mechanisms, reactive oxygen species and redox homeostasis under salinity stress. Frontiers in Plant Science, v. 7, p. 1-15, 2016. DOI: 10.3389/fpls.2016.00548.

Hsiao, T. C. Plant response to water stress. Annual Review of Plant Physiology, v. 24, p. 519-570, 1973. DOI: 10.1146/annurev.pp.24.060173.002511.

Jahromi, F. et al. Influence of salinity on the in vitro development of Glomus intraradices and on the in vivo physiological and molecular responses of mycorrhizal lettuce plants. Microbial Ecology, v. 55, p. 45-53, 2008. DOI: 10.1007/s00248-007-9249-7.

Janz, D. & Polle, A. Harnessing salt for woody biomass production. Tree Physiology, v. 32, p. 1-3, 2012. DOI: 10.1093/treephys/tpr127.

Knight, H. & Knight, M. R. Abiotic stress signalling pathways: specificity and cross-talk. Trends in Plant Science, v. 6, p. 262-267, 2001. DOI: 10.1016/S1360-1385(01)01946-X.

Lacroix, R. L. et al. Potentiometric titration of chloride in plant tissue extracts using the chloride ion electrode. Communications in Soil Science and Plant Analysis, v. 1, p, 1-6, 1970. DOI: 10.1080/00103627009366233.

Lichtenthaler, H. K. & Buschmann, C. Chlorophylls and carotenoids: measurement and characterization by UV-VIS spectroscopy. Current Protocols in Food Analytical Chemistry, F4.3.1, p. 1-8, 2001. DOI: 10.1002/0471142913.faf0403s01.

Li, G. et al. Leaf chlorophyll fluorescence, hyperspectral reflectance, pigments content, malondialdehyde and proline accumulation responses of castor bean (Ricinus communis L.) seedlings to salt stress levels. Industrial Crops and Products, v. 31, p. 13-19, 2010. DOI: 10.1016/j.indcrop.2009.07.015.

Lorenzi, H. (Ed.). Árvores brasileiras: manual de identificação e cultivo de plantas arbóreas nativas do Brasil. Nova Odessa: Plantarum, 1992. 384 p.

Ludewig, F. & Ingo-Flügge, U. Role of metabolite transporters in source-sink carbon allocation. Frontiers in Plant Science, v. 4, p. 231, 2013. DOI: 10.3389/fpls.2013.00231.

Mathur, A. & Vyas, D. K. Socio-ecological issues-eco-economic and sustainability status. Journal of Ecology and Environmental Sciences, v. 4, p. 87-90, 2013. DOI: 10.9735/0976-9900.4.1.87-90.

Moore, S. & Stein, W. H. Photometric ninhydrin method for use in chromatography of amino acids. The Journal of Biological Chemistry, v. 176, p. 367-388, 1948.

Munns, R. et al. Approaches to increasing the salt tolerance of wheat and other cereals. Journal of Experimental Botany, v. 57, p. 1025-1043, 2006. DOI: 10.1093/jxb/erj100.

Munns, R. & Tester, M. Mechanisms of Salinity Tolerance. Annual Review of Plant Biology, v. 59, p. 651-81, 2008. DOI: 10.1146/annurev.arplant.59.032607.092911.

Murphy, J. & Riley, J. P. A. A modified simple solution method for the determination of phosphate in natural waters. Analytica Chimica Acta, v. 27, p. 31-36, 1962. DOI: 10.1016/S0003-2670(00)88444-5.

Pachauri, R. K. & Meyer, L. (Ed.). Climate Change 2014: synthesis report. Geneva, Switzerland: Intergovernmental Panel on Climate Change, 2014. 151 p.

Polle, A. & Chen, S. On the salty side of life: molecular, physiological and anatomical adaptation and acclimation of trees to extreme habitats. Plant, Cell and Environment, v. 38, p. 1794-1816, 2015. DOI: 10.1111/pce.12440.

Porcel, R. et al. Salinity stress alleviation using arbuscular mycorrhizal fungi. A review. Agronomy for Sustainable Development, v. 32, p. 181-200, 2012. DOI: 10.1007/s13593-011-0029-x.

Pospísil, F. & Hrachová, B. Bombacopsis glabra (Pasq.) Robyns: a promising oil-bearing crop for the Socialist Republic of Vietnam. Agricultura Tropica et Subtropica, v. 20, p. 127-142, 1987.

Ribeiro, R. V. et al. Growth and leaf temperature effects on photosynthesis of sweet orange plants infected with Xylella fastidiosa. Plant Pathology, v. 53, p. 334-340, 2004. DOI: 10.1111/j.0032-0862.2004.01012.x.

Richards, C. L. et al. Plasticity in salt tolerance traits allows for invasion of novel habitat by japanese knotweed s. l. (Fallopia japonica and F. × bohemica, Polygonaceae). American Journal of Botany, v. 95, p. 931-942, 2008. DOI: 10.3732/ajb.2007364.

Rodrigues, C. R. F. et al. Physiological adjustment to salt stress in R. communis seedlings is associated with a probable mechanism of osmotic adjustment and a reduction in water lost by transpiration. Industrial Crops and Products, v. 54, p. 233-239, 2014. DOI: 10.1016/j.indcrop.2013.12.041.

Santos, M. G. et al. Caatinga, the Brazilian dry tropical forest: can it tolerate climate changes? Theoretical and Experimental Plant Physiology, v. 26, p. 83-99, 2014. DOI: 10.1007/s40626-014-0008-0.

Santos, M. G. & Pimentel, C. Daily balance of leaf sugars and amino acids as indicators of common bean (Phaseolus vulgaris L.) metabolic response and drought intensity. Physiology and Molecular Biology of Plants, v. 15, p. 23-30, 2009. DOI: 10.1007/s12298-009-0002-1.

Santos, T. O. et al. Escarificação mecânica em sementes de chichá (Sterculia foetida L.). Revista Árvore, v. 28, p. 1-6, 2004. DOI: 10.1590/S0100-67622004000100001.

Scholander, P. F. et al. Sap pressure in vascular plants: negative hydrostatic pressure can be measured in plants. Science, v. 148, p. 339-346, 1965. DOI: 10.1126/science.148.3668.339.

Silitonga, A. S. et al. Production of biodiesel from Sterculia foetida and its process optimization. Fuel, v. 111, p. 478-484, 2013. DOI: 10.1016/j.fuel.2013.03.051.

Silva, F. C. Manual das análises químicas de solos, plantas e fertilizantes. Brasília, DF: Embrapa Informação Tecnológica, 2009. 627 p.

Souza, B. S. et al. Water relations and chlorophyll fluorescence responses of two leguminous trees from the Caatinga to different watering regimes. Acta Physiologiae Plantarum, v. 32, p. 235-244, 2010. DOI: 10.1007/s11738-009-0394-0.

Tester, M. & Davenport, R. Na+ tolerance and Na+ transport in higher plants. Annals of Botany, v. 91, p. 503-527, 2003. DOI: 10.1093/aob/mcg058.

Tezara, W. et al. Water relations and photosynthetic capacity of two species of Calotropis in a tropical semi-arid ecosystem. Annals of Botany, v. 107, p. 397-405, 2011. DOI: 10.1093/aob/mcq245.

Thomas, R. L. et al. Comparison of conventional and automated procedures for N, P and K analysis of plant material using a single digestion. Agronomy Journal, v. 59, p. 240-243, 1967. DOI: 10.2134/agronj1967.00021962005900030010x.

Vipunngeun, N. & Palanuvej, C. Fatty acids of Sterculia foetida seed oil. Journal of Health Research, v. 23, p. 157, 2009.

Wang, Y. et al. Systems dynamic modeling of a guard cell Cl- channel mutant uncovers an emergent homeostatic network regulating stomatal transpiration. Plant Physiology, v. 160, p. 1956-1967, 2012. DOI: 10.1104/pp.112.207704.

Willadino, L. & Câmara, T. R. Tolerância das plantas à salinidade: aspectos fisiológicos e bioquímicos. Enciclopédia Biosfera, v. 16, n. 11, p. 1-23, 2010.

Zhu, J-K. Regulation of ion homeostasis under salt stress. Current Opinion in Plant Biology, v. 6, p. 441- 445, 2003. DOI: 10.1016/S1369-5266(03)00085-2.

Downloads

Published

2017-03-31

How to Cite

LUSTOSA, Bruno Melo; SOUZA, Lígia Gomes Ferreira; FROSI, Gabriella; FALCÃO, Hiram Marinho; PEREIRA, Silvia; OLIVEIRA, Marciel Teixeira; SANTOS, Mauro Guida. Strategies of two tropical woody species to tolerate salt stress. Pesquisa Florestal Brasileira, [S. l.], v. 37, n. 89, p. 63–72, 2017. DOI: 10.4336/2017.pfb.37.89.1332. Disponível em: https://pfb.cnpf.embrapa.br/pfb/index.php/pfb/article/view/1332. Acesso em: 10 may. 2024.

Issue

Section

Articles

Similar Articles

<< < 15 16 17 18 19 20 

You may also start an advanced similarity search for this article.