Viability of embryonic axes of Araucaria angustifolia after freezing using two cryopreservation methods

Authors

DOI:

https://doi.org/10.4336/2018.pfb.38e201701498

Keywords:

Dehydration, Encapsulation, Liquid nitrogen

Abstract

Araucaria angustifolia (Bertol.) O. Kuntze is one of the most important native species in Southern Brazil. However, its naturally recalcitrant seeds represent obstacles for long-term conservation and thus cryopreservation is a viable alternative for germplasm storing. Embryonic axes (EA) excised from araucaria seeds were encapsulated, dehydrated, and submitted to two cryopreservation methods: flash-cooling by freezing in liquid nitrogen (LN) for 2 h and pre-cooling at - 40 °C, followed by freezing in LN for 2 h. Subsequently, the EA were quickly thawed and assessed for DNA integrity, tetrazolium test, in vitro germination and oxidation occurrence. The DNA of both not cryopreserved and cryopreserved EA maintained their integrity. The tetrazolium test results indicated that the majority of flash-cooled EA were viable. After 15 days of in vitro culture, the EA did not germinate and presented signs of oxidation. Dehydration method by direct plunge in LN is promising for cryopreservation of araucaria EA, as demonstrated through the results of tetrazolium test and the maintenance of total DNA integrity.

Downloads

Download data is not yet available.

Author Biographies

Caroline Frizzo, Universidade Federal do Paraná

http://lattes.cnpq.br/7378577758562298

Marguerite Quoirin, Universidade Federal do Paraná

http://lattes.cnpq.br/7947529909503630

References

Abreu, D. C. A. et al. Teste Topográfico de tetrazólio em sementes de pinheiro-brasileiro (Araucaria angustifolia (Bertol.) Kuntze). In: CONGRESSO FLORESTAL PARANAENSE, 4., 2012, Curitiba. Anais...Curitiba: Malinovski Florestal, 2012.
Bandupriya, H. D. D. et al. Effect of abscisic acid on survival and recovery of cryopreserved plumule explants of Coconut (Cocos nulifera L.). Cocos, v. 18, p. 58-66, 2007. DOI: 10.4038/cocos.v18i0.989.
Berjak, P. et al. Experimental parameters underlying failure or success in plant germplasm cryopreservation: a case study on zygotic axes of Quercus robur L. CryoLetters, v. 20, p. 251-262, 1999.
Berjak, P. & Pammenter, N. W. Implications of the lack of desiccation tolerance in recalcitrant seeds. Frontiers in Plant Science, v. 4, p. 1-9, 2013. DOI: 10.3389/fpls.2013.00478.
Brasil. Ministério da Agricultura, Pecuária e Abastecimento. Secretaria de Defesa Agropecuária. Regras para análise de sementes. Brasília, DF, 2009. 399 p.
Demarchi, G. et al. Ultra-low temperature conservation of Brazilian pine embryogenic cultures. Anais da Academia Brasileira de Ciências, v. 86, n. 4, p. 2057-2064, 2014. DOI: 10.1590/0001-3765201420130405.
Doyle, J. J. & Doyle, J. L. Isolation of plant DNA from fresh tissue. Focus, v. 12, p. 13-15, 1990.
Edesi, J. et al. Modified light spectral conditions prior to cryopreservation alter growth characteristics and cryopreservation success of potato (Solanum tuberosum L.) shoot tips in vitro. Plant Cell, Tissue and Organ Culture, v. 128, n. 2, p. 409-421, 2017. DOI: 10.1007/s11240-016-1119-x.
Elbl, P. et al. Comparative transcriptoma analysis of early somatic embryo formation and seed development in Brazilian pine, Araucaria angustifolia (Bert.) Kuntze. Plant Cell Tissue and Organ Culture, v. 120, n. 3, p. 903- 915, 2014. DOI 10.1007/s11240-014-0523-3.
Engelmann, F. & Dussert, S. Cryopreservation. In: Normah, M. N. et al. Conservation of tropical plant species. New York: Springer, 2013. p. 107-119.
Fernandes, P. et al. Cryopreservation of Quercus suber somatic embryos by encapsulation-dehydration and evaluation of genetic stability. Tree Physiology, v. 28, n. 12, p. 1841-1850, 2008. DOI: 10.1093/treephys/28.12.1841.
Fraga, H. P. F. et al. High-efficiency cryopreservation of Araucaria angustifolia (Bertol.) Kuntze embryogenic cultures: ultrastructural characterization and morpho-physiological features. Plant Cell, Tissue and Organ Culture, v. 124, n. 2, p. 307-318, 2016. DOI: 10.1007/s11240-015-0895-z.
Frizzo, C. Comportamento de eixos embrionários de Araucária angustifolia Bertol (O. Kuntze) após a criopreservação, usando o método de encapsulamento-desidratação. 2013. 66 f. Dissertação (Mestrado em Agronomia) - Universidade Federal do Paraná, Curitiba.
Gasparin, E. et al. Physiological and ultrastructural responses during drying of recalcitrant seeds of Araucaria angustifolia. Seed Science and Technology, v. 45, n. 1, p. 112-129, 2017. DOI: 10.15258/sst.2017.45.1.01.
González-Benito, M. E. et al. Effect of antioxidants on the genetic stability of cryopreserved mint shoot tips by encapsulation-dehydration. Plant Cell, Tissue and Organ Culture, v. 127, n. 2, p. 359-368, 2016. DOI:10.1007/s11240-016-1056-8.
Huebinger, J. et al. Direct Measurement of water states in cryopreserved cells reveals tolerance toward ice crystallization. Biophysical Journal, v. 110, n. 4, p. 840-849, 2016. DOI: 10.1016/j.bpj.2015.09.029.
Jaganathan, G. K. et al. Physiological mechanisms only tell half story: multiple biological processes are involved in regulating freezing tolerance of imbibed Lactuca sativa seeds. Scientific Reports, v. 7, p. 1 - 14, 2017. DOI: 10.1038/srep44166.
Kaczmarczyk, A. et al. Current issues in plant cryopreservation. In: Katkov, I. (Ed.). Current frontiers in cryobiology. Rijeka: InTech, 2012. p. 417-438.
KwaÅ›niewska, E. et al. Integration of cryopreservation and tissue culture for germplasm conservation and propagation of Rosa pomifera "˜Karpatia´. Notulae Botanicae Horti Agrobotanici Cluj-Napoca, v. 45, n. 1, p. 208-214, 2017. DOI: 10.15835/nbha45110566.
Lo, C. W. et al. Control of ice formation. ACS nano, v. 11, n. 3, p. 2665-2674, 2017. DOI: 10.1021/acsnano.6b07348.
Maran, J. C. et al. Survival and germination analysis in plantations of Araucaria angustifolia derived from seedlings and seeds. Ciência Florestal, v. 26, n. 4, p. 1349-1360, 2016. DOI: 10.5902/1980509825154.
Marin, M. L. & Duran-Vila, N. Survival of somatic embryos and recovery of plants of sweet orange (Citrus sinensis (L.) Osb.) after immersion in liquid nitrogen. Plant Cell, Tissue and Organ Culture, v. 14, n. 1, p. 51-57, 1988.
Masetto, T. E. et al. Desiccation tolerance and DNA integrity in Eugenia pleurantha O. Berg. (Myrtaceae) seeds. Revista Brasileira de Sementes, v. 30, n. 2, p. 51-56, 2008. DOI: 10.1590/S0101-31222008000200007.
Matsumoto, T. Cryopreservation of plant genetic resources: conventional and new methods. Reviews in Agricultural Science, v. 5, p. 13-20, 2017. DOI: 10.7831/ras5.13.
Menon, A. et al. Cold-induced changes affect survival after exposure to vitrification solution during cryopreservation in the south-west Australian Mediterranean climate species Lomandra sonderi (Asparagaceae). Plant Cell, Tissue and Organ Culture, v. 119, n. 2, p. 347-358, 2014. DOI 10.1007/s11240-014-0538-9.
Murashige, T. & Skoog, F. A revised medium for rapid growth and bioassay with tobacco tissue cultures. Physiologia Plantarum, v. 15, n. 3, p. 473-497, 1962. DOI: 10.1111/j.1399-3054.1962.tb08052.x. 
Nadarajan, J. et al. Applications of differential scanning calorimetry in developing cryopreservation strategies for Parkia speciosa, a tropical tree producing recalcitrant seeds. CryoLetters, v. 29, n. 2, p. 95-110, 2008.
Niino, T. & Arizaga, M. V. Cryopreservation for preservation of potato genetic resources. Breeding science, v. 65, n. 1, p. 41-52, 2015. DOI: 10.1270/jsbbs.65.41.
Normah, M. N. & Makeen, A. M. Cryopreservation of excised embryos and embryonic axes. In: Reed, B. M. (Ed.). Plant cryopreservation: a practical guide. New York: Springer, 2008, p. 211-240.
Pammenter, N. W. & Berjak, P. Physiology of desiccation-sensitive (recalcitrant) seeds and the implications for cryopreservation. International Journal of Plant Sciences, v. 175, n. 1, p. 21-28, 2014. DOI: 10.1086/673302.
Pelissari, A. L. et al. Estrutura espacial arbórea de um remanescente natural de floresta ombrófila mista. Biofix Scientific Journal, v. 1, n. 1, p. 27-32, 2016. DOI: 10.5380/biofix.v1i1.49094.
Pieruzzi, F. P. et al. Cryopreservation of embryogenic cell lines of Araucaria angustifolia (Bert.) O. Kuntze. Cryobiology, v. 63, p. 339, 2011. DOI: 10.1016/j.cryobiol.2011.09.122.
Pritchard, H. W. & Prendergast, F. G. Effects of desiccation and cryopreservation on the in vitro viability of embryos of the recalcitrant seed species Araucaria hunsteinii K. Schum. Journal of Experimental Botany, v. 37, n. 9, p. 1388-1397, 1986. DOI: 10.1093/jxb/37.9.1388.
Reed, B. M. & Uchendu, E. Controlled rate cooling. In: Reed, B. M. (Ed.) Plant Cryopreservation: a practical guide. New York: Springer, 2008. p. 77-92.
Santos, I. R. I. Criopreservação de germoplasma vegetal: a alternativa para a conservação a longo prazo. Biotecnologia, Ciência & Desenvolvimento, n. 20, p. 1-24, 2001.
Sershen, et al. The use of plant stress biomarkers in assessing the effects of desiccation in zygotic embryos from recalcitrant seeds: challenges and considerations. Plant Biology, v. 18, n. 3, p. 433-444, 2016. DOI: 10.1111/plb.12428.
Shahab, M. A. N. et al. Cryopreservation of Smirnovia iranica (Sabeti) seeds and evaluation of cryopreserved seeds under laboratory, greenhouse and natural habitat conditions. Journal of Rangeland Science, v. 7, n. 2, p. 122-137, 2017.
Shibli, R. A. et al. Experimenting two cryopreservation techniques (vitrification and encapsulation-dehydration) as approaches for long-term conservation of in vitro grown shoot tips of wild fennel. Jordan Journal of Biological Sciences, v. 9, n. 3, p. 147-154, 2016.
Sinha, S. et al. The omics of cold stress responses in plants. In: Pandey, G. K. (Ed.). Elucidation of abiotic stress signaling in plants. New York: Springer, 2015. p. 143-194. DOI: 10.1007/978-1-4939-2540-7_6.
Su, C. et al. Novel glyceryl glucoside is a low toxic alternative for cryopreservation agent. Biochemical and Biophysical Research Communications, v. 476, n. 4, p. 359-364, 2016. DOI: 10.1016/j.bbrc.2016.05.127.
Tahtamouni, R. et al. In vitro conservation and cryopreservation of medicinal and aromatic plants: a review. Jordan Journal of Biological Sciences, v. 11, p. 147-167, 2015.
Thomas, P. Araucaria angustifolia. In: The IUCN red list of threatened species 2013: e.T32975A2829141. DOI: 10.2305/IUCN.UK.2013-1.RLTS.T32975A2829141.en.
Thomson, E. S. et al. Deposition-mode ice nucleation reexamined at temperatures below 200 K. Atmospheric Chemistry and Physics, v. 15, n. 4, p. 1621-1632, 2015. DOI: 10.5194/acp-15-1621-2015.
Walters, C. et al. Cryopreservation of recalcitrant (i.e. desiccation-sensitive) seeds. In: Reed, B. M. (Ed.). Plant cryopreservation: a practical guide. Nova York: Springer, 2008. p. 465-484.
Zanette, F. et al. Particularidades e biologia reprodutiva de Araucaria angustifolia. In: Zanette, F. & Wendling, I. (Ed.). Araucária: particularidades, propagação e manejo de plantios. Brasília, DF: Embrapa, 2017. p. 15-30.
Zevallos, B. et al. Biochemical characterization of ecuadorian wild Solanum lycopersicum Mill. plants produced from non-cryopreserved and cryopreserved seeds. CryoLetters, v. 37, n. 4, p. 413-421, 2013.

Downloads

Published

2018-12-07

How to Cite

FRIZZO, Caroline; QUOIRIN, Marguerite. Viability of embryonic axes of Araucaria angustifolia after freezing using two cryopreservation methods. Pesquisa Florestal Brasileira, [S. l.], v. 38, 2018. DOI: 10.4336/2018.pfb.38e201701498. Disponível em: https://pfb.cnpf.embrapa.br/pfb/index.php/pfb/article/view/1498. Acesso em: 13 may. 2024.

Issue

Section

Articles

Similar Articles

<< < 1 2 3 > >> 

You may also start an advanced similarity search for this article.