Wood as source of natural larvicides against Aedes aegypti (Diptera: Culicidae)

Authors

DOI:

https://doi.org/10.4336/2023.pfb.43e202002174

Keywords:

Insecticides, Secondary metabolites, Essential oil

Abstract

Numerous substances synthesized by the tree are present in the wood as defensives for environmental interactions. Such substances can be a potential source of active principles, including those of larvicidal action against Aedes aegypti mosquito. From literature review, 23 scientific papers on the larvicidal activity of compounds present in wood were found. The studies included the analysis of 66 plant species belonging to 23 botanical families. About 30% of the studied species were considered to have active properties. The most active sample was obtained by Callitris glaucophylla whose essential oil displayed CL50 = 0.69 ppm. Twenty-three potentially active molecules were identified, with the best result obtained by tectoquinone isolated from the methanol extract of the specie Cryptomeria japonica, with LC50 = 3.3 ppm. We observed that wood can be a source of natural larvicides with similar action to the synthetic organophosphorus temephos, whose CL50 value founded in literature ranged from 2.3 to 9.4 ppm. Among the advantages of using natural larvicides, it is highlighted the higher biodegradability and lower toxicity to non-target organisms when compared to synthetic ones, besides the contribution to face the problem of insect resistance.

Downloads

Download data is not yet available.

Author Biographies

Lucia Fernanda Alves Garcia, Serviço Florestal Brasileiro, Laboratório de Produtos Florestais

Mauro Vicentini Correia, Universidade de Brasília, Instituto de Química

References

Bezerra-Silva, P. C. et al. Extract of Bowdichia virgilioides and maackiain as larvicidal agent against Aedes aegypti mosquito. Experimental Parasitology, v. 153, p. 160-164, 2015. http://dx.doi.org/10.1016/j.exppara.2015.03.018. DOI: https://doi.org/10.1016/j.exppara.2015.03.018

Biondi, A. et al. Do biopesticides affect the demographic traits of a parasitoid wasp and its biocontrol services through sublethal effects? PLoS ONE, v. 8, 2013. http://dx.doi.org/10.1371/journal.pone.0076548. DOI: https://doi.org/10.1371/journal.pone.0076548

Borges, J. C. M. et al. Chemical composition, oviposition deterrent and larvicidal activities of the wood extracts of Tabebuia avellanedae from the Cerrado of Brazil. Journal of Medicinal Plants Research, v. 12, p. 404-414, 2018. https://doi.org/10.5897/jmpr2018.6650. DOI: https://doi.org/10.5897/JMPR2018.6650

Borges, J. C. M. et al. Mosquiticidal and repellent potential of formulations containing wood residue extracts of a Neotropical plant, Tabebuia heptaphylla. Industrial Crops and Products, v. 129, p. 424-433, 2019. http://dx.doi.org/10.1016/j.indcrop.2018.12.022. DOI: https://doi.org/10.1016/j.indcrop.2018.12.022

Braga, I. A. & Valle, D. Aedes aegypti: inseticidas, mecanismos de ação e resistência. Epidemiologia e Serviços de Saúde, v. 16, p. 279-293, 2007. http://dx.doi.org/10.5123/s1679-49742007000400006. DOI: https://doi.org/10.5123/S1679-49742007000400006

Brasil. Ministério da Saúde. Guia de vigilância em saúde. 3. ed. 2019. Disponível em https://bvsms.saude.gov.br/bvs/publicacoes/guia_vigilancia_saude_3ed.pdf. Acesso em: 14 dez. 2020.

Caesar, L. K. & Cech, N. B. Synergy and antagonism in natural product extracts: when 1 + 1 does not equal 2. Natural Product Reports, v. 36, p. 869-888, 2019. http://dx.doi.org/10.1039/c9np00011a. DOI: https://doi.org/10.1039/C9NP00011A

Chang, S. T. et al. Cytotoxicity of extractives from Taiwania cryptomerioides heartwood. Phytochemistry, v. 55, p. 227-232, 2000. https://doi.org/10.1016/S0031-9422(00)00275-2. DOI: https://doi.org/10.1016/S0031-9422(00)00275-2

Cheng, S. S. et al. Bioactivity of selected plant essential oils against the yellow fever mosquito Aedes aegypti larvae. Bioresource Technology, v. 89, p. 99-102, 2003. https://doi.org/10.1016/S0960-8524(03)00008-7. DOI: https://doi.org/10.1016/S0960-8524(03)00008-7

Cheng, S. S. et al. Larvicidal activities of wood and leaf essential oils and ethanolic extracts from Cunninghamia konishii Hayata against the dengue mosquitoes. Industrial Crops and Products, v. 47, p. 310, 2013. https://doi.org/10.1016/j.indcrop.2013.03.016. DOI: https://doi.org/10.1016/j.indcrop.2013.03.016

Cheng, S. S. et al. Larvicidal activity of tectoquinone isolated from red heartwood-type Cryptomeria japonica against two mosquito species. Bioresource Technology, v. 99, p. 3617-3622, 2008. https://doi.org/10.1016/j.biortech.2007.07.038. DOI: https://doi.org/10.1016/j.biortech.2007.07.038

Christianson, D. W. Structural and chemical biology of terpenoid cyclases. Chemical Reviews, v. 117, p. 11570-11648, 2017. https://doi.org/10.1021/acs.chemrev.7b00287. DOI: https://doi.org/10.1021/acs.chemrev.7b00287

Chung, I. M. et al. Chemical composition and larvicidal effects of essential oil of Dendropanax morbifera against Aedes aegypti L. Biochemical Systematics and Ecology, v. 37, p. 470-473, 2009. https://doi.org/10.1016/j.bse.2009.06.004. DOI: https://doi.org/10.1016/j.bse.2009.06.004

Cole, E. R. Estudo fitoquímico do óleo essencial dos frutos da aroeira (Schinus terebinthifolius RADDI) e sua eficácia no combate ao dengue. 2008. 66 f. Dissertação (Mestre em Química) – Universidade Federal do Espírito Santo, Vitória.

Costa, J. G. M. et al. Estudo fitoquímico de Auxemma glazioviana Taub. Revista Brasileira de Farmacognosia, v. 12, p. 68-69, 2002. http://dox.doi.org/10.1590/s0102-695x2002000300033. DOI: https://doi.org/10.1590/S0102-695X2002000300033

Demarque, D. P. et al. Mass spectrometry-based metabolomics approach in the isolation of bioactive natural products. Scientific Reports, v. 10, p. 1-9, 2020. https://doi.org/10.1038/s41598-020-58046-y. DOI: https://doi.org/10.1038/s41598-020-58046-y

Dias, C. N. Avaliação da atividade larvicida em Aedes aegypti L. (Diptera: Culicidae) de óleos essenciais de espécies vegetais: um estudo de revisão e bioprospecção. 2013. 121 f. Dissertação (Mestre em Saúde e Ambiente) - Universidade Federal do Maranhão, São Luís.

Falkowski, M. et al. Towards the optimization of botanical insecticides research: Aedes aegypti larvicidal natural products in French Guiana. Acta Tropica, v. 201, p. 105179, 2020. https://doi.org/10.1016/j.actatropica.2019.105179. DOI: https://doi.org/10.1016/j.actatropica.2019.105179

Fengel, D. & Wegener, G. Wood: chemistry, ultrastructure, reactions. Berlin; New York: Walter de Gruyter, 1989.

Ferraz, I. D. K. et al. Características básicas para um agrupamento ecológico preliminar de espécies madeireiras da floresta de terra firme da Amazônia Central. Acta Amazonica, v. 34, p. 621-633, 2004. https://doi.org/10.1590/S0044-59672004000400014. DOI: https://doi.org/10.1590/S0044-59672004000400014

Ferreira, A. G. et al. Constituintes químicos do caule de Spathelia excelsa (rutaceae) e atividade frente a Aedes aegypti. Química Nova, v. 32, p. 2068-2072, 2009. https://doi.org/10.1590/S0100-40422009000800016. DOI: https://doi.org/10.1590/S0100-40422009000800016

Garcez, W. S. et al. Larvicidal activity against Aedes aegypti of some plants native to the West-Central region of Brazil. Bioresource Technology, v. 100, p. 6647-6650, 2009. https://doi.org/10.1016/j.biortech.2009.06.092. DOI: https://doi.org/10.1016/j.biortech.2009.06.092

Garcez, W. S. et al. Naturally occurring plant compounds with larvicidal activity against Aedes aegypti. Revista Virtual de Química, v. 5, p. 363-393, 2013. https://doi.org/10.5935/1984-6835.20130034. DOI: https://doi.org/10.5935/1984-6835.20130034

Garcia, L. F. A. et al. Dehydro-α-lapachone obtained from Handroanthus incanus species displays Aedes Aegypti larvicidal activity. International Journal of Biology, Pharmacy and Allied Sciences, v. 10, 2021. https://doi.org/10.31032/IJBPAS/2021/10.7.5521. DOI: https://doi.org/10.31032/IJBPAS/2021/10.7.5521

Govindarajan, M. Evaluation of Andrographis paniculata Burm.f. (Family:Acanthaceae) extracts against Culex quinquefasciatus (Say.) and Aedes aegypti (Linn.) (Diptera:Culicidae). Asian Pacific Journal of Tropical Medicine, v 4, p. 176-181, 2011. https://doi.org/10.1016/S1995-7645(11)60064-3. DOI: https://doi.org/10.1016/S1995-7645(11)60064-3

Gu, H. J. et al. Mosquito larvicidal activities of extractives from black heartwood-type Cryptomeria japonica. Parasitology Research, v. 105, p. 1455-1458, 2009. https://doi.org/10.1007/s00436-009-1550-6. DOI: https://doi.org/10.1007/s00436-009-1550-6

Guarda, C. et al. Atividade larvicida de produtos naturais e avaliação da susceptibilidade ao inseticida temefós no controle do Aedes aegypti (Diptera: Culicidae). Interciencia, v. 41, p. 243-247, 2016.

Harborne, J. B. The flavonoids. Taylor & Francis Group, 1993. DOI: https://doi.org/10.1007/978-1-4899-2911-2

Hon, D. N. S. & Shiraishi, N. Wood and cellulosic chemistry. New York: Marcel Dekker, 2000. 923 p.

Hubbell, S. P. et al. How many tree species are there in the Amazon and how many of them will go extinct? Proceedings of the National Academy of Sciences, v. 105, p. 11498-11504, 2008. https://doi.org/10.1073/pnas.0801915105. DOI: https://doi.org/10.1073/pnas.0801915105

IBGE. Instituto Brasileiro de Geografia e Estatística. Pevs 2016: produção da silvicultura e da extração vegetal. 2017. Disponível em: https://agenciadenoticias.ibge.gov.br/agencia-noticias/2013-agencia-de-noticias/releases/16981-pevs-2016-producao-da-silvicultura-e-da-extracao-vegetal-alcanca-r-18-5-bilhoes.html. Acesso em: 14 dez. 2020.

Ishak, A. R. et al. Biolarvacidal potential of Ipomoea Cairica extracts against key dengue vectors. Procedia: Social and Behavioral Sciences, v. 153, p. 180-188, 2014. https://doi.org/10.1016/j.sbspro.2014.10.052. DOI: https://doi.org/10.1016/j.sbspro.2014.10.052

Jiang, X. et al. ‘What is the aquatic toxicity of saponin-rich plant extracts used as biopesticides? Environmental Pollution, v 236, p. 416-424, 2018. https://doi.org/10.1016/j.envpol.2018.01.058. DOI: https://doi.org/10.1016/j.envpol.2018.01.058

Kirker, G. T. et al. The role of extractives in naturally durable wood species. International Biodeterioration and Biodegradation, v. 82, p. 53-58, 2013. https://doi.org/10.1016/j.ibiod.2013.03.007. DOI: https://doi.org/10.1016/j.ibiod.2013.03.007

Klock, U. & Andrade, A. S. Química da madeira. Curitiba: Universidade Federal do Paraná, 2013.

Kuo, P. M. et al. Insecticidal activity of essential oil from Chamaecyparis formosensis Matsum. Holzforschung, v. 61, p. 595-599, 2007. https://doi.org/10.1515/HF.2007.087. DOI: https://doi.org/10.1515/HF.2007.087

Ladino, O. J. P. & Suarez, L. E. C. Chemical constituents of the wood from Zanthoxylum quinduense Tul. (Rutaceae). Química Nova, v. 33, p. 1019-1021, 2010. https://doi.org/10.1590/S0100-40422010000500002. DOI: https://doi.org/10.1590/S0100-40422010000500002

Macoris, M. L. G. et al. Association of insecticide use and alteration on Aedes aegypti susceptibility status. Memórias do Instituto Oswaldo Cruz, v. 102, p. 895-900, 2007. https://doi.org/10.1590/S0074-02762007000800001. DOI: https://doi.org/10.1590/S0074-02762007000800001

Maffei, M. E. et al. Plant volatiles: Production, function and pharmacology. Natural Product Reports, v. 28, p. 1359-1380, 2011. https://doi.org/10.1039/c1np00021g. DOI: https://doi.org/10.1039/c1np00021g

Martins, B. T. et al. Marine natural flavonoids: chemistry and biological activities. Natural Product Research, v. 33, p. 3260-3272, 2019. https://doi.org/10.1080/14786419.2018.1470514. DOI: https://doi.org/10.1080/14786419.2018.1470514

Mori, C. L. S. O. Análise das características da madeira e do óleo essencial de candeia: Eremanthus erythropappus (DC.) Macleish, da região de Aiuruoca, MG. 2008. 107 f. Tese (Doutorado em Recursos Florestais) - Universidade de São Paulo, Piracicaba.

Mukandiwa, L. et al. Larvicidal activity of leaf extracts and seselin from Clausena anisata (Rutaceae) against Aedes aegypti. South African Journal of Botany, v. 100, p. 169-173, 2015. https://doi.org/10.1016/j.sajb.2015.05.016. DOI: https://doi.org/10.1016/j.sajb.2015.05.016

Navarro, D. et al. Larvicidal activity of plant and algae extracts, essential oils and isolated chemical constituents against Aedes aegypti. The Natural Products Journal, v. 3, p. 268-291, 2013. https://doi.org/10.2174/221031550304140328113732. DOI: https://doi.org/10.2174/221031550304140328113732

Omena, M. C. et al. Larvicidal activities against Aedes aegypti of some Brazilian medicinal plants. Bioresource Technology, v. 98, p. 2549-2556, 2007. https://doi.org/10.1016/j.biortech.2006.09.040. DOI: https://doi.org/10.1016/j.biortech.2006.09.040

Panche, A. N. et al. Flavonoids: an overview. Journal of Nutritional Science, v. 5, p. 1-15. 2016. https://doi.org/10.1017/jns.2016.41. DOI: https://doi.org/10.1017/jns.2016.41

Pavela, R. Essential oils for the development of eco-friendly mosquito larvicides: a review. Industrial Crops and Products, v. 76, p. 174-187, 2015. https://doi.org/10.1016/j.indcrop.2015.06.050. DOI: https://doi.org/10.1016/j.indcrop.2015.06.050

Pavela, R. et al. Plant extracts for developing mosquito larvicides: from laboratory to the field, with insights on the modes of action. Acta Tropica, v. 193, p. 236-271, 2019. https://doi.org/10.1016/j.actatropica.2019.01.019. DOI: https://doi.org/10.1016/j.actatropica.2019.01.019

Pino-Otín, M. R. et al. Ecotoxicity of a novel biopesticide from Artemisia absinthium on non-target aquatic organisms. Chemosphere, v. 216, p. 131–146, 2019. https://doi.org/10.1016/j.chemosphere.2018.09.071. DOI: https://doi.org/10.1016/j.chemosphere.2018.09.071

Pluempanupat, S. et al. Laboratory evaluation of Dalbergia oliveri (Fabaceae: Fabales) extracts and isolated isoflavonoids on Aedes aegypti (Diptera: Culicidae) mosquitoes. Industrial Crops and Products, v. 44, p. 653-658, 2013. https://doi.org/10.1016/j.indcrop.2012.09.006. DOI: https://doi.org/10.1016/j.indcrop.2012.09.006

Quin, M. B. et al. Traversing the fungal terpenome. Natural Product Reports, v. 31, p. 1449-1473, 2014. https://doi.org/10.1039/c4np00075g. DOI: https://doi.org/10.1039/C4NP00075G

Rodrigues, A. M. S. et al. Larvicidal activity of Cybistax antisyphilitica against Aedes aegypti larvae. Fitoterapia, v. 76, p. 755-757, 2005. https://doi.org/10.1016/j.fitote.2005.08.015. DOI: https://doi.org/10.1016/j.fitote.2005.08.015

Rodrigues, A. M. et al. Larvicidal activity of some Cerrado plant extracts against Aedes aegypti. Journal of the American Mosquito Control Association, v. 22, p. 314–317, 2006. https://doi.org/10.2987/8756-971X(2006)22[314:LAOSCP]2.0.CO;2314-317, 2006. https://doi.org/10.2987/8756-971X(2006)22[314:LAOSCP]2.0.CO;2. DOI: https://doi.org/10.2987/8756-971X(2006)22[314:LAOSCP]2.0.CO;2

Santana, M. A. E. & Okino, E. Y. A. Chemical composition of 36 Brazilian Amazon forest wood species. Holzforschung, v. 61, p. 469-477, 2006. https://doi.org/10.1515/HF.2007.084. DOI: https://doi.org/10.1515/HF.2007.084

Santos, R. C. et al. Effect of properties chemical and siringil/guaiacil relation wood clones of eucalyptus in the production of charcoal. Ciência Florestal, v. 26, p. 657-669, 2016. https://doi.org/10.5902/1980509822765. DOI: https://doi.org/10.5902/1980509822765

Santos, S. R. L. Síntese e atividade de compostos potencialmente larvicidas frente ao Aedes aegypti. 2014. 100 f. Dissertação (Mestrado em Ciências Farmacêuticas), Universidade Federal de Sergipe, São Cristóvão.

Santos, T. G. et al. Chemical characterization of essential oils from Drimys angustifolia miers (Winteraceae) and antibacterial activity of their major compounds. Journal of the Brazilian Chemical Society, v. 24, p. 164-170, 2013. https://doi.org/10.1590/S0103-50532013000100020. DOI: https://doi.org/10.1590/S0103-50532013000100020

Shaalan, E. A. S. et al. Efficacy of botanical extracts from Callitris glaucophylla, against Aedes aegypti and Culex annulirostris mosquitoes. Tropical biomedicine, v. 23, p. 180-185, 2006.

Silva, C. M. da. Metabólitos secundários de plantas do semi-árido de Pernambuco – uma inovação no controle de fitopatógenos. 2013. 109 f. Dissertação (Mestrado em Bioquímica e Fisiologia) – Universidade Federal de Pernambuco, Recife.

Silva, L. M. G. E. Estudo químico biomonitorado por ensaio com larvas Aedes Aegypti das espécies Ocotea velloziana (Meisn.) Mez. e Aiouea trinervis (Meisn.). 2010. 110 f. Tese (Doutorado em Saúde e Desenvolvimento) – Universidade Federal de Mato Grosso do Sul, Campo Grande.

Silvério, M. R. S. et al. Plant natural products for the control of Aedes aegypti: the main vector of important arboviruses. Molecules, v. 25, p. 3484, 2020. https://doi.org/10.3390/molecules25153484. DOI: https://doi.org/10.3390/molecules25153484

Simões, C. M. O. et al. Farmacognosia: do produto natural ao medicamento. Porto Alegre: Artmed, 2017.

Sjöstron, E. Wood chemistry: fundamentals and applications. Orlando: Academic Press, 1981.

Souza, M. A. et al. Adulticide and repellent activity of essential oils against Aedes aegypti (Diptera: Culicidae): a review. South African Journal of Botany, v. 124, p. 160-165, 2019. https://doi.org/10.1016/j.sajb.2019.05.007. DOI: https://doi.org/10.1016/j.sajb.2019.05.007

Subramaniam, J. et al. Mosquito larvicidal activity of Aloe vera (Family:Liliaceae) leaf extract and Bacillus sphaericus, against Chikungunya vector, Aedes aegypti. Saudi Journal of Biological Sciences, v. 19, p. 503-509, 2012. https://doi.org/10.1016/j.sjbs.2012.07.003. DOI: https://doi.org/10.1016/j.sjbs.2012.07.003

Thomson, R. H. Naturally occurring quinones IV. Scotland: University of Aberdeen, 1997. DOI: https://doi.org/10.1007/978-94-009-1551-0

Tiew, P. et al. Antifungal, antioxidant and larvicidal activities of compounds isolated from the heartwood of Mansonia gagei. Phytotherapy Research, v. 17, p. 190-193, 2003. https://doi.org/10.1002/ptr.1260. DOI: https://doi.org/10.1002/ptr.1260

Valette, N. et al. Antifungal activities of wood extractives. Fungal Biology Reviews, p. 1-11, 2017. https://doi.org/10.1016/j.fbr.2017.01.002. DOI: https://doi.org/10.1016/j.fbr.2017.01.002

Vidal, J. M. et al. Preservação de madeiras no Brasil, cenário atual e tendências. Ciência Florestal, v. 25, p. 257-271, 2015. https://doi.org/10.1590/1980-509820152505257. DOI: https://doi.org/10.5902/1980509817484

Vizzotto, M. et al. Metabólitos secundários encontrados em plantas e sua importância. Pelotas: Embrapa Clima Temperado, 2010. 16 p. (Embrapa Clima Temperado. Documentos, 316). Disponível em: https://www.infoteca.cnptia.embrapa.br/bitstream/doc/886074/1/documento316.pdf. Acesso em: 14 dez. 2020.

Wahyuni, D. New bioinsecticide granules toxin from extract of papaya (carica papaya) seed and leaf modified against Aedes aegypti larvae. Procedia Environmental Sciences, v. 23, p. 323-328, 2015. https://doi.org/10.1016/j.proenv.2015.01.047. DOI: https://doi.org/10.1016/j.proenv.2015.01.047

Walia, S. et al. Phytochemical biopesticides: some recent developments. Phytochemistry Reviews, v. 16, p. 989-1007, 2017. https://doi.org/10.1007/s11101-017-9512-6. DOI: https://doi.org/10.1007/s11101-017-9512-6

Wuillda, A. C. J. S. et al. Larvicidal activity of secondary plant metabolites in Aedes aegypti control: an overview of the previous 6 years. Natural Product Communications, v. 14, p. 1-11, 2019. https://doi.org/10.1177/1934578X19862893. DOI: https://doi.org/10.1177/1934578X19862893

Zaridah, M. Z. et al. Mosquitocidal activities of malaysian plants. Journal of Tropical Forest Science, v.18, p. 74-80, 2006. https://www.jstor.org/stable/43594649.

Published

2023-12-26

How to Cite

GARCIA, Lucia Fernanda Alves; CORREIA, Mauro Vicentini. Wood as source of natural larvicides against Aedes aegypti (Diptera: Culicidae). Pesquisa Florestal Brasileira, [S. l.], v. 44, 2023. DOI: 10.4336/2023.pfb.43e202002174. Disponível em: https://pfb.cnpf.embrapa.br/pfb/index.php/pfb/article/view/2174. Acesso em: 11 may. 2024.

Issue

Section

Review Articles

Similar Articles

1 2 3 4 5 6 > >> 

You may also start an advanced similarity search for this article.