A madeira como fonte de larvicidas naturais contra Aedes aegypti (Diptera: Culicidae)

Autores

DOI:

https://doi.org/10.4336/2023.pfb.43e202002174

Palavras-chave:

Inseticida, Metabólitos secundários, Óleo essencial

Resumo

Na madeira estão presentes inúmeras substâncias sintetizadas pela árvore como defensivos à estímulos ambientais. Tais substâncias podem ser fonte potencial de princípios ativos, incluindo os de ação larvicida contra o mosquito Aedes aegypti. A partir de revisão de literatura, foram encontrados 23 trabalhos científicos sobre a atividade larvicida de compostos presentes na madeira. Os estudos contemplaram a análise de 66 espécies vegetais pertencentes a 23 famílias botânicas. Cerca de 30% das espécies estudadas foram consideradas ativas. A espécie que apresentou o material bruto mais ativo foi Callitris glaucophylla, cujo óleo essencial apresentou CL50 = 0,69 ppm. Foram identificadas 23 moléculas potencialmente ativas, sendo o melhor resultado obtido pela tectoquinona isolada do extrato metanólico de Cryptomeria japonica, com CL50 = 3,3 ppm. Observou-se que a madeira pode ser fonte de larvicidas naturais com ação similar ao larvicida sintético organofosforado temefós, cujo valor de CL50 encontrado na literatura variou entre 2,3 a 9,4 ppm. Dentre as vantagens do uso de larvicidas de origem natural, destaca-se a maior biodegradabilidade e a menor toxicidade aos organismos não alvos quando comparados aos sintéticos, além da contribuição para o enfrentamento do problema da resistência dos insetos.

Downloads

Não há dados estatísticos.

Biografia do Autor

Lucia Fernanda Alves Garcia, Serviço Florestal Brasileiro, Laboratório de Produtos Florestais

Mauro Vicentini Correia, Universidade de Brasília, Instituto de Química

Referências

Bezerra-Silva, P. C. et al. Extract of Bowdichia virgilioides and maackiain as larvicidal agent against Aedes aegypti mosquito. Experimental Parasitology, v. 153, p. 160-164, 2015. http://dx.doi.org/10.1016/j.exppara.2015.03.018. DOI: https://doi.org/10.1016/j.exppara.2015.03.018

Biondi, A. et al. Do biopesticides affect the demographic traits of a parasitoid wasp and its biocontrol services through sublethal effects? PLoS ONE, v. 8, 2013. http://dx.doi.org/10.1371/journal.pone.0076548. DOI: https://doi.org/10.1371/journal.pone.0076548

Borges, J. C. M. et al. Chemical composition, oviposition deterrent and larvicidal activities of the wood extracts of Tabebuia avellanedae from the Cerrado of Brazil. Journal of Medicinal Plants Research, v. 12, p. 404-414, 2018. https://doi.org/10.5897/jmpr2018.6650. DOI: https://doi.org/10.5897/JMPR2018.6650

Borges, J. C. M. et al. Mosquiticidal and repellent potential of formulations containing wood residue extracts of a Neotropical plant, Tabebuia heptaphylla. Industrial Crops and Products, v. 129, p. 424-433, 2019. http://dx.doi.org/10.1016/j.indcrop.2018.12.022. DOI: https://doi.org/10.1016/j.indcrop.2018.12.022

Braga, I. A. & Valle, D. Aedes aegypti: inseticidas, mecanismos de ação e resistência. Epidemiologia e Serviços de Saúde, v. 16, p. 279-293, 2007. http://dx.doi.org/10.5123/s1679-49742007000400006. DOI: https://doi.org/10.5123/S1679-49742007000400006

Brasil. Ministério da Saúde. Guia de vigilância em saúde. 3. ed. 2019. Disponível em https://bvsms.saude.gov.br/bvs/publicacoes/guia_vigilancia_saude_3ed.pdf. Acesso em: 14 dez. 2020.

Caesar, L. K. & Cech, N. B. Synergy and antagonism in natural product extracts: when 1 + 1 does not equal 2. Natural Product Reports, v. 36, p. 869-888, 2019. http://dx.doi.org/10.1039/c9np00011a. DOI: https://doi.org/10.1039/C9NP00011A

Chang, S. T. et al. Cytotoxicity of extractives from Taiwania cryptomerioides heartwood. Phytochemistry, v. 55, p. 227-232, 2000. https://doi.org/10.1016/S0031-9422(00)00275-2. DOI: https://doi.org/10.1016/S0031-9422(00)00275-2

Cheng, S. S. et al. Bioactivity of selected plant essential oils against the yellow fever mosquito Aedes aegypti larvae. Bioresource Technology, v. 89, p. 99-102, 2003. https://doi.org/10.1016/S0960-8524(03)00008-7. DOI: https://doi.org/10.1016/S0960-8524(03)00008-7

Cheng, S. S. et al. Larvicidal activities of wood and leaf essential oils and ethanolic extracts from Cunninghamia konishii Hayata against the dengue mosquitoes. Industrial Crops and Products, v. 47, p. 310, 2013. https://doi.org/10.1016/j.indcrop.2013.03.016. DOI: https://doi.org/10.1016/j.indcrop.2013.03.016

Cheng, S. S. et al. Larvicidal activity of tectoquinone isolated from red heartwood-type Cryptomeria japonica against two mosquito species. Bioresource Technology, v. 99, p. 3617-3622, 2008. https://doi.org/10.1016/j.biortech.2007.07.038. DOI: https://doi.org/10.1016/j.biortech.2007.07.038

Christianson, D. W. Structural and chemical biology of terpenoid cyclases. Chemical Reviews, v. 117, p. 11570-11648, 2017. https://doi.org/10.1021/acs.chemrev.7b00287. DOI: https://doi.org/10.1021/acs.chemrev.7b00287

Chung, I. M. et al. Chemical composition and larvicidal effects of essential oil of Dendropanax morbifera against Aedes aegypti L. Biochemical Systematics and Ecology, v. 37, p. 470-473, 2009. https://doi.org/10.1016/j.bse.2009.06.004. DOI: https://doi.org/10.1016/j.bse.2009.06.004

Cole, E. R. Estudo fitoquímico do óleo essencial dos frutos da aroeira (Schinus terebinthifolius RADDI) e sua eficácia no combate ao dengue. 2008. 66 f. Dissertação (Mestre em Química) – Universidade Federal do Espírito Santo, Vitória.

Costa, J. G. M. et al. Estudo fitoquímico de Auxemma glazioviana Taub. Revista Brasileira de Farmacognosia, v. 12, p. 68-69, 2002. http://dox.doi.org/10.1590/s0102-695x2002000300033. DOI: https://doi.org/10.1590/S0102-695X2002000300033

Demarque, D. P. et al. Mass spectrometry-based metabolomics approach in the isolation of bioactive natural products. Scientific Reports, v. 10, p. 1-9, 2020. https://doi.org/10.1038/s41598-020-58046-y. DOI: https://doi.org/10.1038/s41598-020-58046-y

Dias, C. N. Avaliação da atividade larvicida em Aedes aegypti L. (Diptera: Culicidae) de óleos essenciais de espécies vegetais: um estudo de revisão e bioprospecção. 2013. 121 f. Dissertação (Mestre em Saúde e Ambiente) - Universidade Federal do Maranhão, São Luís.

Falkowski, M. et al. Towards the optimization of botanical insecticides research: Aedes aegypti larvicidal natural products in French Guiana. Acta Tropica, v. 201, p. 105179, 2020. https://doi.org/10.1016/j.actatropica.2019.105179. DOI: https://doi.org/10.1016/j.actatropica.2019.105179

Fengel, D. & Wegener, G. Wood: chemistry, ultrastructure, reactions. Berlin; New York: Walter de Gruyter, 1989.

Ferraz, I. D. K. et al. Características básicas para um agrupamento ecológico preliminar de espécies madeireiras da floresta de terra firme da Amazônia Central. Acta Amazonica, v. 34, p. 621-633, 2004. https://doi.org/10.1590/S0044-59672004000400014. DOI: https://doi.org/10.1590/S0044-59672004000400014

Ferreira, A. G. et al. Constituintes químicos do caule de Spathelia excelsa (rutaceae) e atividade frente a Aedes aegypti. Química Nova, v. 32, p. 2068-2072, 2009. https://doi.org/10.1590/S0100-40422009000800016. DOI: https://doi.org/10.1590/S0100-40422009000800016

Garcez, W. S. et al. Larvicidal activity against Aedes aegypti of some plants native to the West-Central region of Brazil. Bioresource Technology, v. 100, p. 6647-6650, 2009. https://doi.org/10.1016/j.biortech.2009.06.092. DOI: https://doi.org/10.1016/j.biortech.2009.06.092

Garcez, W. S. et al. Naturally occurring plant compounds with larvicidal activity against Aedes aegypti. Revista Virtual de Química, v. 5, p. 363-393, 2013. https://doi.org/10.5935/1984-6835.20130034. DOI: https://doi.org/10.5935/1984-6835.20130034

Garcia, L. F. A. et al. Dehydro-α-lapachone obtained from Handroanthus incanus species displays Aedes Aegypti larvicidal activity. International Journal of Biology, Pharmacy and Allied Sciences, v. 10, 2021. https://doi.org/10.31032/IJBPAS/2021/10.7.5521. DOI: https://doi.org/10.31032/IJBPAS/2021/10.7.5521

Govindarajan, M. Evaluation of Andrographis paniculata Burm.f. (Family:Acanthaceae) extracts against Culex quinquefasciatus (Say.) and Aedes aegypti (Linn.) (Diptera:Culicidae). Asian Pacific Journal of Tropical Medicine, v 4, p. 176-181, 2011. https://doi.org/10.1016/S1995-7645(11)60064-3. DOI: https://doi.org/10.1016/S1995-7645(11)60064-3

Gu, H. J. et al. Mosquito larvicidal activities of extractives from black heartwood-type Cryptomeria japonica. Parasitology Research, v. 105, p. 1455-1458, 2009. https://doi.org/10.1007/s00436-009-1550-6. DOI: https://doi.org/10.1007/s00436-009-1550-6

Guarda, C. et al. Atividade larvicida de produtos naturais e avaliação da susceptibilidade ao inseticida temefós no controle do Aedes aegypti (Diptera: Culicidae). Interciencia, v. 41, p. 243-247, 2016.

Harborne, J. B. The flavonoids. Taylor & Francis Group, 1993. DOI: https://doi.org/10.1007/978-1-4899-2911-2

Hon, D. N. S. & Shiraishi, N. Wood and cellulosic chemistry. New York: Marcel Dekker, 2000. 923 p.

Hubbell, S. P. et al. How many tree species are there in the Amazon and how many of them will go extinct? Proceedings of the National Academy of Sciences, v. 105, p. 11498-11504, 2008. https://doi.org/10.1073/pnas.0801915105. DOI: https://doi.org/10.1073/pnas.0801915105

IBGE. Instituto Brasileiro de Geografia e Estatística. Pevs 2016: produção da silvicultura e da extração vegetal. 2017. Disponível em: https://agenciadenoticias.ibge.gov.br/agencia-noticias/2013-agencia-de-noticias/releases/16981-pevs-2016-producao-da-silvicultura-e-da-extracao-vegetal-alcanca-r-18-5-bilhoes.html. Acesso em: 14 dez. 2020.

Ishak, A. R. et al. Biolarvacidal potential of Ipomoea Cairica extracts against key dengue vectors. Procedia: Social and Behavioral Sciences, v. 153, p. 180-188, 2014. https://doi.org/10.1016/j.sbspro.2014.10.052. DOI: https://doi.org/10.1016/j.sbspro.2014.10.052

Jiang, X. et al. ‘What is the aquatic toxicity of saponin-rich plant extracts used as biopesticides? Environmental Pollution, v 236, p. 416-424, 2018. https://doi.org/10.1016/j.envpol.2018.01.058. DOI: https://doi.org/10.1016/j.envpol.2018.01.058

Kirker, G. T. et al. The role of extractives in naturally durable wood species. International Biodeterioration and Biodegradation, v. 82, p. 53-58, 2013. https://doi.org/10.1016/j.ibiod.2013.03.007. DOI: https://doi.org/10.1016/j.ibiod.2013.03.007

Klock, U. & Andrade, A. S. Química da madeira. Curitiba: Universidade Federal do Paraná, 2013.

Kuo, P. M. et al. Insecticidal activity of essential oil from Chamaecyparis formosensis Matsum. Holzforschung, v. 61, p. 595-599, 2007. https://doi.org/10.1515/HF.2007.087. DOI: https://doi.org/10.1515/HF.2007.087

Ladino, O. J. P. & Suarez, L. E. C. Chemical constituents of the wood from Zanthoxylum quinduense Tul. (Rutaceae). Química Nova, v. 33, p. 1019-1021, 2010. https://doi.org/10.1590/S0100-40422010000500002. DOI: https://doi.org/10.1590/S0100-40422010000500002

Macoris, M. L. G. et al. Association of insecticide use and alteration on Aedes aegypti susceptibility status. Memórias do Instituto Oswaldo Cruz, v. 102, p. 895-900, 2007. https://doi.org/10.1590/S0074-02762007000800001. DOI: https://doi.org/10.1590/S0074-02762007000800001

Maffei, M. E. et al. Plant volatiles: Production, function and pharmacology. Natural Product Reports, v. 28, p. 1359-1380, 2011. https://doi.org/10.1039/c1np00021g. DOI: https://doi.org/10.1039/c1np00021g

Martins, B. T. et al. Marine natural flavonoids: chemistry and biological activities. Natural Product Research, v. 33, p. 3260-3272, 2019. https://doi.org/10.1080/14786419.2018.1470514. DOI: https://doi.org/10.1080/14786419.2018.1470514

Mori, C. L. S. O. Análise das características da madeira e do óleo essencial de candeia: Eremanthus erythropappus (DC.) Macleish, da região de Aiuruoca, MG. 2008. 107 f. Tese (Doutorado em Recursos Florestais) - Universidade de São Paulo, Piracicaba.

Mukandiwa, L. et al. Larvicidal activity of leaf extracts and seselin from Clausena anisata (Rutaceae) against Aedes aegypti. South African Journal of Botany, v. 100, p. 169-173, 2015. https://doi.org/10.1016/j.sajb.2015.05.016. DOI: https://doi.org/10.1016/j.sajb.2015.05.016

Navarro, D. et al. Larvicidal activity of plant and algae extracts, essential oils and isolated chemical constituents against Aedes aegypti. The Natural Products Journal, v. 3, p. 268-291, 2013. https://doi.org/10.2174/221031550304140328113732. DOI: https://doi.org/10.2174/221031550304140328113732

Omena, M. C. et al. Larvicidal activities against Aedes aegypti of some Brazilian medicinal plants. Bioresource Technology, v. 98, p. 2549-2556, 2007. https://doi.org/10.1016/j.biortech.2006.09.040. DOI: https://doi.org/10.1016/j.biortech.2006.09.040

Panche, A. N. et al. Flavonoids: an overview. Journal of Nutritional Science, v. 5, p. 1-15. 2016. https://doi.org/10.1017/jns.2016.41. DOI: https://doi.org/10.1017/jns.2016.41

Pavela, R. Essential oils for the development of eco-friendly mosquito larvicides: a review. Industrial Crops and Products, v. 76, p. 174-187, 2015. https://doi.org/10.1016/j.indcrop.2015.06.050. DOI: https://doi.org/10.1016/j.indcrop.2015.06.050

Pavela, R. et al. Plant extracts for developing mosquito larvicides: from laboratory to the field, with insights on the modes of action. Acta Tropica, v. 193, p. 236-271, 2019. https://doi.org/10.1016/j.actatropica.2019.01.019. DOI: https://doi.org/10.1016/j.actatropica.2019.01.019

Pino-Otín, M. R. et al. Ecotoxicity of a novel biopesticide from Artemisia absinthium on non-target aquatic organisms. Chemosphere, v. 216, p. 131–146, 2019. https://doi.org/10.1016/j.chemosphere.2018.09.071. DOI: https://doi.org/10.1016/j.chemosphere.2018.09.071

Pluempanupat, S. et al. Laboratory evaluation of Dalbergia oliveri (Fabaceae: Fabales) extracts and isolated isoflavonoids on Aedes aegypti (Diptera: Culicidae) mosquitoes. Industrial Crops and Products, v. 44, p. 653-658, 2013. https://doi.org/10.1016/j.indcrop.2012.09.006. DOI: https://doi.org/10.1016/j.indcrop.2012.09.006

Quin, M. B. et al. Traversing the fungal terpenome. Natural Product Reports, v. 31, p. 1449-1473, 2014. https://doi.org/10.1039/c4np00075g. DOI: https://doi.org/10.1039/C4NP00075G

Rodrigues, A. M. S. et al. Larvicidal activity of Cybistax antisyphilitica against Aedes aegypti larvae. Fitoterapia, v. 76, p. 755-757, 2005. https://doi.org/10.1016/j.fitote.2005.08.015. DOI: https://doi.org/10.1016/j.fitote.2005.08.015

Rodrigues, A. M. et al. Larvicidal activity of some Cerrado plant extracts against Aedes aegypti. Journal of the American Mosquito Control Association, v. 22, p. 314–317, 2006. https://doi.org/10.2987/8756-971X(2006)22[314:LAOSCP]2.0.CO;2314-317, 2006. https://doi.org/10.2987/8756-971X(2006)22[314:LAOSCP]2.0.CO;2. DOI: https://doi.org/10.2987/8756-971X(2006)22[314:LAOSCP]2.0.CO;2

Santana, M. A. E. & Okino, E. Y. A. Chemical composition of 36 Brazilian Amazon forest wood species. Holzforschung, v. 61, p. 469-477, 2006. https://doi.org/10.1515/HF.2007.084. DOI: https://doi.org/10.1515/HF.2007.084

Santos, R. C. et al. Effect of properties chemical and siringil/guaiacil relation wood clones of eucalyptus in the production of charcoal. Ciência Florestal, v. 26, p. 657-669, 2016. https://doi.org/10.5902/1980509822765. DOI: https://doi.org/10.5902/1980509822765

Santos, S. R. L. Síntese e atividade de compostos potencialmente larvicidas frente ao Aedes aegypti. 2014. 100 f. Dissertação (Mestrado em Ciências Farmacêuticas), Universidade Federal de Sergipe, São Cristóvão.

Santos, T. G. et al. Chemical characterization of essential oils from Drimys angustifolia miers (Winteraceae) and antibacterial activity of their major compounds. Journal of the Brazilian Chemical Society, v. 24, p. 164-170, 2013. https://doi.org/10.1590/S0103-50532013000100020. DOI: https://doi.org/10.1590/S0103-50532013000100020

Shaalan, E. A. S. et al. Efficacy of botanical extracts from Callitris glaucophylla, against Aedes aegypti and Culex annulirostris mosquitoes. Tropical biomedicine, v. 23, p. 180-185, 2006.

Silva, C. M. da. Metabólitos secundários de plantas do semi-árido de Pernambuco – uma inovação no controle de fitopatógenos. 2013. 109 f. Dissertação (Mestrado em Bioquímica e Fisiologia) – Universidade Federal de Pernambuco, Recife.

Silva, L. M. G. E. Estudo químico biomonitorado por ensaio com larvas Aedes Aegypti das espécies Ocotea velloziana (Meisn.) Mez. e Aiouea trinervis (Meisn.). 2010. 110 f. Tese (Doutorado em Saúde e Desenvolvimento) – Universidade Federal de Mato Grosso do Sul, Campo Grande.

Silvério, M. R. S. et al. Plant natural products for the control of Aedes aegypti: the main vector of important arboviruses. Molecules, v. 25, p. 3484, 2020. https://doi.org/10.3390/molecules25153484. DOI: https://doi.org/10.3390/molecules25153484

Simões, C. M. O. et al. Farmacognosia: do produto natural ao medicamento. Porto Alegre: Artmed, 2017.

Sjöstron, E. Wood chemistry: fundamentals and applications. Orlando: Academic Press, 1981.

Souza, M. A. et al. Adulticide and repellent activity of essential oils against Aedes aegypti (Diptera: Culicidae): a review. South African Journal of Botany, v. 124, p. 160-165, 2019. https://doi.org/10.1016/j.sajb.2019.05.007. DOI: https://doi.org/10.1016/j.sajb.2019.05.007

Subramaniam, J. et al. Mosquito larvicidal activity of Aloe vera (Family:Liliaceae) leaf extract and Bacillus sphaericus, against Chikungunya vector, Aedes aegypti. Saudi Journal of Biological Sciences, v. 19, p. 503-509, 2012. https://doi.org/10.1016/j.sjbs.2012.07.003. DOI: https://doi.org/10.1016/j.sjbs.2012.07.003

Thomson, R. H. Naturally occurring quinones IV. Scotland: University of Aberdeen, 1997. DOI: https://doi.org/10.1007/978-94-009-1551-0

Tiew, P. et al. Antifungal, antioxidant and larvicidal activities of compounds isolated from the heartwood of Mansonia gagei. Phytotherapy Research, v. 17, p. 190-193, 2003. https://doi.org/10.1002/ptr.1260. DOI: https://doi.org/10.1002/ptr.1260

Valette, N. et al. Antifungal activities of wood extractives. Fungal Biology Reviews, p. 1-11, 2017. https://doi.org/10.1016/j.fbr.2017.01.002. DOI: https://doi.org/10.1016/j.fbr.2017.01.002

Vidal, J. M. et al. Preservação de madeiras no Brasil, cenário atual e tendências. Ciência Florestal, v. 25, p. 257-271, 2015. https://doi.org/10.1590/1980-509820152505257. DOI: https://doi.org/10.5902/1980509817484

Vizzotto, M. et al. Metabólitos secundários encontrados em plantas e sua importância. Pelotas: Embrapa Clima Temperado, 2010. 16 p. (Embrapa Clima Temperado. Documentos, 316). Disponível em: https://www.infoteca.cnptia.embrapa.br/bitstream/doc/886074/1/documento316.pdf. Acesso em: 14 dez. 2020.

Wahyuni, D. New bioinsecticide granules toxin from extract of papaya (carica papaya) seed and leaf modified against Aedes aegypti larvae. Procedia Environmental Sciences, v. 23, p. 323-328, 2015. https://doi.org/10.1016/j.proenv.2015.01.047. DOI: https://doi.org/10.1016/j.proenv.2015.01.047

Walia, S. et al. Phytochemical biopesticides: some recent developments. Phytochemistry Reviews, v. 16, p. 989-1007, 2017. https://doi.org/10.1007/s11101-017-9512-6. DOI: https://doi.org/10.1007/s11101-017-9512-6

Wuillda, A. C. J. S. et al. Larvicidal activity of secondary plant metabolites in Aedes aegypti control: an overview of the previous 6 years. Natural Product Communications, v. 14, p. 1-11, 2019. https://doi.org/10.1177/1934578X19862893. DOI: https://doi.org/10.1177/1934578X19862893

Zaridah, M. Z. et al. Mosquitocidal activities of malaysian plants. Journal of Tropical Forest Science, v.18, p. 74-80, 2006. https://www.jstor.org/stable/43594649.

Downloads

Publicado

26-12-2023

Como Citar

GARCIA, Lucia Fernanda Alves; CORREIA, Mauro Vicentini. A madeira como fonte de larvicidas naturais contra Aedes aegypti (Diptera: Culicidae). Pesquisa Florestal Brasileira, [S. l.], v. 44, 2023. DOI: 10.4336/2023.pfb.43e202002174. Disponível em: https://pfb.cnpf.embrapa.br/pfb/index.php/pfb/article/view/2174. Acesso em: 2 dez. 2024.

Edição

Seção

Artigos de Revisão

Artigos Semelhantes

1 2 3 > >> 

Você também pode iniciar uma pesquisa avançada por similaridade para este artigo.