Bark volume and thickness in teak trees with different spacings

Authors

DOI:

https://doi.org/10.4336/2022.pfb.42e201902067

Keywords:

Slash, Planting density, Tectona grandis

Abstract

The bark in some forest species may represent a significant volume of the trunk, demanding the use of efficient methods to estimate bark volume indirectly through equations. The aim of this study was to evaluate bark volume and thickness in teak (Tectona grandis) trees planted at different densities. Volume data were used to evaluate the percentage of bark in different portions of the trunk. Averages were compared by the Tukey test (p < 0.05%) and regression analysis (polynomial model) was used to predict bark thickness along the trunk. The effect of spacing on bark thickness was compared by the model identity test. The percentage of bark in more densely planted teak trees was higher. The percentage of bark decreases from the base to the top of the tree trunk, with an average volume of green bark reaching 24% to 30% of the total volume. Increasing spacing promotes higher absolute average bark thickness.

Downloads

Download data is not yet available.

Author Biographies

Diogo Guido Streck Vendruscolo, Proterra - Projetos, Agrimensura & Ambiental

http://lattes.cnpq.br/5678773391512383

Felipe Vieira Cunha Neto, Instituto Federal de Educação Ciência e Tecnologia de Mato Grosso

http://lattes.cnpq.br/3416329782025765

Isabel Matos Fraga, Instituto Federal de Educação Ciência e Tecnologia de Mato Grosso

http://lattes.cnpq.br/1548854892506582

References

Althen, F. W. V. Accuracy of the Swedish bark measuring gauge. The Forestry Chronicle, v. 40, n. 2, p. 257-258, 1964.

Alvares, C. A. et al. Köppen´s climate classiï¬cation map for Brazil. Meteorologishe Zeitschrift, v. 22, n. 6, p. 711-728, 2013. https://doi.org/10.1127/0941-2948/2013/0507.

Baptista, I. et al. Characterization and fractioning of Tectona grandis bark in view of its valorization as a biorefinery raw material. Industrial Crops and Products, v. 50, p. 166-175, 2013. https://doi.org/10.1016/j.indcrop.2013.07.004.

Brooks, J. R. & Jiang, L. Comparison of prediction equations for estimating inside bark diameters for yellow-poplar, red maple, and red pine in West Virginia. Northern Journal of Applied Forestry, v. 26, n. 1, p. 5-8, 2009. https://doi.org/10.1093/njaf/26.1.5.

Campos, J. C. C. & Leite, H. G. Mensuração florestal: perguntas e respostas. Viçosa, MG: UFV, 2013. 605 p.

Cordero, L. & Kanninen, M. Heartwood, sapwood and bark content, and wood dry density of young and mature teak (Tectona grandis) trees grown in Costa Rica. Silva Fennica, v. 37, n. 1, p. 45-54, 2003. https://doi.org/10.14214/sf.511.

Dégbé, M. et al. Extracts of Tectona grandis and Vernonia amygdalina have anti-Toxoplasma and pro-inflammatory properties in vitro. Parasite, v. 25, p. 1-8, 2018. https://doi.org/10.1051/parasite/2018014.

Drescher, R. et al. Fator de forma artificial para povoamentos jovens de Tectona grandis em Mato Grosso. Pesquisa Florestal Brasileira, v. 30, n. 63, p. 191-197, 2010. https://doi.org/10.4336/2010.pfb.30.63.191.

Figueiredo, O. B. et al. Estimativa do percentual de casca e fator de forma em povoamentos jovens de teca (Tectona grandis L.f). Rio Branco, AC: Embrapa Acre, 2005. 5 p. (Embrapa Acre. Documentos, 165).

Firmino, A. C. et al. First report of Ceratocystis fimbriata causing wilt in Tectona grandis in Brazil. New Disease Reports, v. 25, p. 24, 2012. https://doi.org/10.5197/j.2044-0588.2017.035.035.

Gray, H. R. The form and taper of forest-tree stems. Oxford: Imperial Forestry Institute, University of Oxford, 1956. 79 p. (Institute paper, 32).

Graybill, F. A. Theory and application of linear model. Belmont: Duxbury, 1976. 704 p.

Kitikidou, K. et al. bark thickness model for Pinus halepensis in Kassandra, Chalkidiki (Northern Greece). Silva Balcanica, v. 15, n. 1, p. 47-55, 2014.

Husen, A. & Pal, M. Effect of branch position and auxin treatment on clonal propagation of Tectona grandis Linn. f.. New Forests, v. 34, n. 3, p. 223-233, 2007. https://doi.org/10.1007/s11056-007-9050-y.

Laasasenaho, J. et al. Modelling bark thickness of Picea abies with taper curves. Forest Ecology and Management, v. 206, n. 1, p. 35-47, 2005. https://doi.org/10.1016/j.foreco.2004.10.058.

Leite, H. G. et al. Modelo de afilamento de cerne de Tectona grandis Lf. Scientia Forestalis, v. 39, n. 89, p. 53-59, 2011.

Li, R. & Weiskittel, A. R. Estimating and predicting bark thickness for seven conifer species in the Acadian Region of North America using a mixed-effects modeling approach: comparison of model forms and subsampling strategies. European Journal of Forest Research, v. 130, n. 2, p. 219-233, 2011. https://doi.org/10.1007/s10342-010-0423-y.

Marshall, H. D. et al. Effects of bark thickness estimates on optimal log merchandising. Forest Products Journal, v. 56, n. 11, p. 87-92, 2006.

Neamatallah, A. et al. An extract from teak (Tectona grandis) bark inhibited Listeria monocytogenes and methicillin resistant Staphylococcus aureus. Letters Applied Microbiolgy, v. 41, p. 94-96, 2005. https://doi.org/10.1111/j.1472-765x.2005.01680.x.

Nunes, M. C. M. et al. Comportamento da precipitação pluvial no município de Cáceres Pantanal Mato-Grossense no período de 1971 a 2011. Científica, v. 44, n. 3, p. 271-278, 2016. https://doi.org/10.15361/1984-5529.2016v44n3p271-278.

Passos, C. A. M. et al. Avaliação silvicultural de Tectona grandis L. f., em Cáceres - MT, Brasil: resultados preliminares. Ciência Florestal, v. 16, n. 2, p. 225-232, 2006. https://doi.org/10.5902/198050981901.

Patil, S. et al. Removal of methylene blue, a basic dye from aqueous solution by adsorption using teak tree (Tectona grandis) bark powder. International Journal of Environmental Sciences, v. 1, n. 5, p.11-726, 2011.

Pausas, J. G. Bark thickness and fire regime. Functional Ecology, v. 29, p. 315-327, 2015. https://doi.org/10.1111/1365-2435.12372.

Pelissari, A. L. et al. Desenvolvimento quantitativo e qualitativo de Tectona grandis L.f. em Mato Grosso. Floresta e Ambiente, v. 20, n. 3, p. 371-383, 2013. https://doi.org/10.4322/floram.2013.027.

R Core Team. A language and Environment for Statistical Computing. Vienna: R Foundation for Statistical Computing, 2017. Disponível em: http://www.Rproject.org/.

Silva, R. S. et al. Desempenho silvicultural de Tectona grandis L. f. em diferentes espaçamentos em Cáceres, MT. Floresta e Ambiente, v. 23, n. 3, p. 397-405, 2016. https://doi.org/10.1590/2179-8087.143015.

Stängle, S. M. et al. Comparison of models for estimating bark thickness of Picea abies in southwest Germany: the role of tree, stand, and environmental factors. Annals of Forest Science, v. 74, n. 16, p. 1-10, 2017.

Stängle, S. M. et al. Measurement and prediction of bark thickness in Picea abies: assessment of accuracy, precision, and sample size requirements. Canadian Journal of Forest Research, v. 46, n. 1, p. 39-47, 2015. https://doi.org/10.1139/cjfr-2015-0263.

Tewari, V. P. & Mariswamy, K. M. Heartwood, sapwood and bark content of teak trees grown in Karnataka, India. Journal of Forestry Research, v. 24, n. 4, p. 721-725, 2013. https://doi.org/10.1007/s11676-013-0410-5.

Vendruscolo, D. G. S. et al. Dominant height growth in Tectona grandis plantations in Mato Grosso, Brazil. Floresta e Ambiente, v.26, n. 4, 2019a. https://doi.org/10.1590/2179-8087.070317.

Vendruscolo, D. G. S. et al. Modelagem da espessura e percentual de casca em árvores de Tectona grandis L.f. Scientia Forestalis, v. 47, n. 121, 2019b. https://doi.org/10.18671/scifor.v47n121.14.

Downloads

Published

2022-12-14

How to Cite

VENDRUSCOLO, Diogo Guido Streck; CUNHA NETO, Felipe Vieira; FRAGA, Isabel Matos. Bark volume and thickness in teak trees with different spacings. Pesquisa Florestal Brasileira, [S. l.], v. 42, 2022. DOI: 10.4336/2022.pfb.42e201902067. Disponível em: https://pfb.cnpf.embrapa.br/pfb/index.php/pfb/article/view/2067. Acesso em: 12 may. 2024.

Issue

Section

Articles

Similar Articles

1 2 3 4 5 6 7 8 9 10 > >> 

You may also start an advanced similarity search for this article.