Nitrogen Supply, nutritional status, yield and quality of rubber of Hevea brasiliensis trees

Authors

DOI:

https://doi.org/10.4336/2022.pfb.42e202002134

Keywords:

Leaf tissue analysis, Nutritional balance plants , Rubber tree

Abstract

We aimed to study the effect of N fertilization on leaf composition, yield and quality of rubber of trees of Hevea brasiliensis Muell. Arg. and how the responses relate to plant N status at the previous growing season. The experiment was carried out in a commercial rubber plantation, located in the municipality of Barbosa, São Paulo State, with 12-year-old trees and first tapping. The treatments corresponded to fertilization with N at the recommended rate (50 kg ha-1) and excessive rates (100 and 200 kg ha-1); a control without application of the nutrient was also included. Tree nutritional status, yield and quality of rubber were evaluated.  The results revealed a decreasing linear effect of N on yield. The highest N rate also affected latex quality, as revealed by a decreasing in the values"‹ of parameters associated with mechanical strength. There was an increase in leaf concentration of N, P and K, while Ca was reduced. Our results, therefore, suggest that leaf analysis could be a complementary tool for adjusting N fertilization of rubber trees and contribute to reduce the

Downloads

Download data is not yet available.

Author Biographies

Geisa Lima Mesquita, Fundação Educacional de Penápolis

http://lattes.cnpq.br/5993312146324251

Juliana Iassia Gimenez, Fundação Educacional de Penápolis

Fernando César Bachiega Zambrosi, Instituto Agronômico, Centro de Solos e Recursos Ambientais

References

Abraham, J. et al. Effect of integrated nutrient management on soil quality and growth of Hevea brasiliensis during the immature phase. Rubber Science, v. 28, n. 2, p. 159-167, 2015.

Ahrends, A. et al. Current trends of rubber plantation expansion may threaten biodiversity and livelihoods. Global Environmental Change, v. 34, p. 48-58, 2015. https://doi.org/10.1016/j.gloenvcha.2015.06.002.

Allé, J. Y. et al. Effect of mineral fertilization on agrophysiological parameters and economic viability of clone PB 235 of Hevea brasiliensis in the region of GO in south western Côte d´Ivoire. Journal of Animal & Plant Sciences, v. 24, n. 2, p. 3768-3780, 2015.

Allen, K. et al. Soil nitrogen-cycling responses to conversion of lowland forests to oil palm and rubber plantations in Sumatra, Indonesia. PLos One, v. 10, n. 7, 2015. https://doi.org/10.1371/journal.pone.0133325.

Arantes, F. C. et al. Adaptability and stability in rubber tree progenies under different environmental conditions. Pesquisa Florestal Brasileira, v. 33, n. 73, p. 37-44, 2013. https://doi: 10.4336/2013.pfb.33.73.436

ASTM. American Society of Testing and Materials. Anual book of ASTM standards: v. 0.001. Philadelphia, 2001.

Bataglia, O. C. & Santos, W. R. Efeito da adubação NPK na fertilidade do solo, nutrição e crescimento da seringueira. Revista Brasileira de Ciência do Solo, v. 23, p. 881-890, 1999.

Chen, K. et al. Estimation of the nitrogen concentration of rubber tree using fractional calculus augmented NIR spectra. Industrial Crops and Products, v. 108, p. 831-839, 2017.https://doi.org/10.1016/j.indcrop.2017.06.069

Davidson, E. A. & Howarth, R. W. Nutrients in synergy. Nature, v. 449, p. 1000-1002, 2007. https://doi.org/10.1038/4491000a.

Esah, Y. Clonal characterization of latex and rubber properties. Journal of Natural Rubber Research, v. 5, n. 1, p. 52-80, 1990.

Ho, C. C. Fundamentals and recent applications of natural rubber latex in dipping technology. In: Kohjiya, S. & Ikeda, Y. Chemistry, manufacture, and application of natural rubber. 2nd. ed. San Diego: Elsevier Science & Technology, 2021. p. 317-361. (Woodhead Publishing in Materials series). https://doi.org/10.1016/C2018-0-04686-1.

Horton, P. et al. Technologies to deliver food and climate security through agriculture. Nature Plants, v. 7, n. 3, p. 250-255, 2021. https://doi.org/10.1038/s41477-021-00877-2.

Leghari, S. J. et al. Role of nitrogen for plant growth and development: a revew. Advances in Environmental Biology, v. 10, n. 9, p. 209-218, 2016.

Liao, L. et al. Effect of nitrogen supply on nitrogen metabolism in the citrus cultivar "˜Huangguaogan." Plos One, v. 14, n. 3, 2019. https://doi.org/10.1371/journal.pone.0213874.

Marschner, H. Functions of mineral: micronutrients. In: Marschner, H. Mineral nutrition of higher plants, 2. ed. San Diego: Academic Press, 1995. p. 313-404.

Mendes, A. D. R. et al. Concentração e redistribuição de nutrientes minerais nos diferentes estágios foliares de seringueira. Acta Amazônica, v. 42, p. 525-532, 2012. https://doi.org/10.1590/S0044-59672012000400010.

Mesquita, G. L. et al. A practical approach for assessing the efficiency of coated urea on controlling nitrogen availability. Bragantia, v. 76, p. 311-317, 2017. https://doi.org/10.1590/1678-4499.034.

Moreno, R. M. B. et al. Avaliação do látex e da borracha natural de clones de seringueira no Estado de São Paulo. Pesquisa Agropecuária Brasileira, v. 38, n. 5, p. 583-590, 2003. https://doi.org/10.1590/S0100-204X2003000500005.

Moreno, R. M. B. et al. Technological properties of latex and natural rubber of Hevea brasiliensis clones. Scientia Agricola, v. 62, p. 122-126, 2005. https://doi.org/10.1590/S0103-90162005000200005.

Quaggio, J. A. et al. Phosphorus and potassium soil test and nitrogen leaf analysis as a base for citrus fertilization. Nutrient Cycling in Agroecosystems, v. 52, p. 67-74, 1998. https://doi.org/10.1023/A:1009763027607.

Raij, B. van et al. Recomendações de adubação e calagem para o Estado de São Paulo. 2 ed. Campinas: Instituto Agronômico; Fundação IAC, 1997. p. 285. (Boletim técnico, 100).

Salisu, M. A. et al. Effect of soilless media on growth and some physiological traits of rubber (Hevea brasiliensis) seedlings. International Journal of Agriculture, Forestry and Plantation, v. 3, n. 1, p. 95-100, 2016. http://ijafp.com/index.php/issue/volume-3-june-2016.

Saufe, N. A. et al. Influence of different rates of nitrogen (N) and phosphorus (P) fertilizers on growth and nutrient use efficiency of rubber (Hevea brasiliensis). European Journal of Engineering Research and Science, v. 3, n. 3, 2018. https://doi.org/10.24018/ejers.2018.3.3.628.

Sas Institute Inc. The SAS System: r - Release 6.12. Cary, NC, 2005.

Vaysse, L. et al. Natural rubber. In: Matyjaszewski, K. M. Polymer science: a comprehensive reference. Amsterdam: Elsevier, 2012.p. 281-293. https://doi. org/10.1016/B978-0-444-53349-4.00267-3.

Vrignon-Brenas, S. et al. Nutrient management of immature rubber plantations: a review. Agronomy for Sustainable Development, v. 93, p. 11, 2019. https://doi.org/10.1007/s13593-019-0554-6.

Published

2022-12-14

How to Cite

LUIZ, William Gutieli Gouveia; MESQUITA, Geisa Lima; SOUZA, Felipe Oliveira; MARTINS, Marcos Leandro; GIMENEZ, Juliana Iassia; ZAMBROSI, Fernando César Bachiega. Nitrogen Supply, nutritional status, yield and quality of rubber of Hevea brasiliensis trees. Pesquisa Florestal Brasileira, [S. l.], v. 42, 2022. DOI: 10.4336/2022.pfb.42e202002134. Disponível em: https://pfb.cnpf.embrapa.br/pfb/index.php/pfb/article/view/2134. Acesso em: 11 may. 2024.

Issue

Section

Articles

Similar Articles

1 2 3 4 5 6 7 8 9 10 > >> 

You may also start an advanced similarity search for this article.