Avaliação de lignina kraft e resíduos de serraria para produção de briquetes

Autores

DOI:

https://doi.org/10.4336/2022.pfb.42e202102186

Palavras-chave:

Biomassa, Recursos naturais, Usos potenciais

Resumo

O objetivo de se tornar uma sociedade baseada na utilização racional dos recursos naturais, tem levado à consideração de muitas alternativas pela academia e setor industrial. O setor florestal pode ter um destaque especial na tentativa de atingir esses objetivos ao utilizar resíduos de seus processos. Um dos requisitos mais importantes da sociedade é a produção de energia. Coprodutos do beneficiamento da madeira e das usinas de celulose podem ser utilizados no desenvolvimento da geração de bioenergia. A densificação da biomassa envolve questões de manuseio, transporte e armazenamento e, ainda, quando resíduos florestais industriais como a lignina são adicionados a essa biomassa, o produto energético final pode ter algumas propriedades melhoradas, agregando valor à cadeia produtiva. O objetivo deste estudo foi avaliar o aproveitamento do resíduo industrial lenhoso, a serragem de Joannesia princeps Vellozo enriquecida com lignina Kraft como aditivo, visando à produção de briquetes. Um dos principais resultados deste trabalho foi a possibilidade de se obter um briquete com melhores propriedades (maior densidade aparente e maior resistência) ao usar 6% de lignina Kraft como aditivo e pressão de 1500 PSI.

Downloads

Não há dados estatísticos.

Biografia do Autor

Carlos Eduardo Silveira da Silva, Universidade Federal Rural do Rio de Janeiro, Instituto de Florestas

http://lattes.cnpq.br/9842202527152359

Larisse Aparecida Ribas Batalha, Universidade Federal Rural do Rio de Janeiro, Instituto de Florestas

http://lattes.cnpq.br/8408754769772480

Alexandre Monteiro de Carvalho, Universidade Federal Rural do Rio de Janeiro, Instituto de Florestas

http://lattes.cnpq.br/1858250183196632

Vinicius Bohrer Lobosco Gonzaga de Oliveira, Ekove

http://lattes.cnpq.br/4407730577942584

Ana Márcia Macedo Ladeira Carvalho, Universidade Federal de Viçosa, Departamento de Engenharia Florestal

http://lattes.cnpq.br/6017392658993288

Angélica de Cássia Oliveira Carneiro, Universidade Federal de Viçosa, Departamento de Engenharia Florestal

http://lattes.cnpq.br/9474032258378987

Fernando José Borges Gomes, Universidade Federal Rural do Rio de Janeiro, Instituto de Florestas

http://lattes.cnpq.br/0502504979310236

Referências

ABNT. Associação Brasileira de Normas Técnicas. NBR ISO 11093-9: paper and cardboard: test tubes Part 9: determination of resistance to rupture. Rio de Janeiro, 2009.

Ackom, E. et al. Industrial sustainability of competing wood energy options in Canada. Applied Biochemistry and Biotechnology, n. 162, p. 2259-2272, 2010. https://doi.org/10.1007/s12010-010-9000-6.

Alaru, M. et al. Lignin content and briquette quality of different fibre hemp plant types and energy sunflower. Field Crops Research, v. 124, n. 3, p. 332-339, 2011. https://doi.org/10.1016/j.fcr.2011.06.024.

Ayyachamy, M. et al. Lignin: untapped biopolymers in biomass conversion technologies. Biomass Conversion and Biorefinery, n. 3, p. 255-268, 2013. https://doi.org/10.1007/s13399-013-0084-4.

Azadi, P. et al. Liquid fuels, hydrogen and chemicals from lignin: a critical review. Renewable and Sustainable Energy Reviews, v. 21, p. 506-523, 2013. https://doi.org/10.1016/j.rser.2012.12.022.

Berghel, J. et al. The effects of kraft lignin additives on wood fuel pellet quality, energy use and shelf life. Fuel Processing Technology, v. 112, p. 64-69, 2013. http://dx.doi.org/10.1016/j.fuproc.2013.02.011.

Bhattacharya, S. C. et al. A study on improved biomass briquetting. Energy for Sustainable Development, v. 6, n. 2, p. 67-71, 2002. http://dx.doi.org/10.1016/S0973-0826(08)60317-8.

Boschetti, W. T. N. et al. Potential of kraft lignin as an additive in briquette production. Nordic Pulp & Paper Research Journal, v. 34, n. 1, p. 147-152, 2019. https://doi.org/10.1515/npprj-2018-0002.

Boudet, A. Lignins and lignification: selected issues. Plant Physiology and Biochemistry, v. 38, n. 1-2, p. 81-96, 2000. https://doi.org/10.1016/S0981-9428(00)00166-2.

Brand, M. A. Forest biomass energy. Rio de Janeiro: Energy. Interciência, 2010.

Carvalho, D. M. et al. Assessment of chemical transformations in eucalyptus, sugarcane bagasse and straw during hydrothermal, dilute acid, and alkaline pretreatments. Industrial Crops and Products, v. 73, p. 118-126, 2015. https://doi.org/10.1016/j.indcrop.2015.04.021.

Clavijo, L. et al. Eucalyptus Kraft Lignin as an additive strongly enhances the mechanical resistance of tree-leaf pellets. Processes, v. 8, n. 376, p. 1-9, 2020. https://doi.org/10.3390/pr8030376.

Cochran, W. G. The comparison of percentages in matched samples. Biometrika, v. 37, n. 3-4, p. 256-266, 1950. https://doi.org/10.1093/biomet/37.3-4.256.

Deshannavar, U. B. et al. Production and characterization of agro-based briquettes and estimation of calorific value by regression analysis: an energy application. Materials Science for Energy Technologies, v. 1, n. 2, p. 175-181, 2018. https://doi.org/10.1016/j.mset.2018.07.003.

DIN. Deutsches Institut Für Normung. DIN EN 14918: determination of calorific value. Germany, 2010.

DIN. Deutsches Institut Für Normung. DIN EN 15103: solid biofuels: determination of bulk density. Germany, 2010.

DIN. Deutsches Institut Für Normung. DIN EN 15104: determination of total content of carbon, hydrogen and nitrogen: I - Instrumental methods. Germany, 2011.

DIN. Deutsches Institut Für Normung. DIN EN 51705: testing of solid mineral fuels: determination of the bulk density of solid fuels. Germany, 2001.

Donato-Trancoso, A. et al. Seed oil of Joannesia princeps improves cutaneous wound closure inexperimental mice. Acta Histochemica, v. 116, n. 7, p. 1169-1177, 2014. https://doi.org/10.1016/j.acthis.2014.06.005.

Duong, L. D. et al. High molecular-weight thermoplastic polymerization of kraft lignin macromers with diisocyante. BioResources, v. 9, n. 2, p. 2359-2371, 2014. https://doi.org/10.15376/biores.9.2.2359-2371.

Eichler, P. et al. Potential assessment of eucalyptus grown for biorefinery processes. Agronomy Science and Biotechnology, v. 3, n. 1, p. 1-11, 2017. https://doi.org/10.33158/ASB.2017v3i1p1.

Ekeberg, D. et al. Characterisation of lignosulphonates and kraft lignin by hydrophobic interaction chromatography. Analytica Chimica Acta, v. 565, n. 1, p. 121-128, 2006. https://doi.org/10.15376/10.1016/j.aca.2006.02.008.

European Standards. Advancement of pellets-related. Germany: Pellets Atlas, 2009.

Ferreira, G. W. et al. Kraft-antraquinone pulp properties of Eucalyptus dunnii obtained within five tree plantation spacings and compared to comercially planted Eucalyptus grandis and Eucalyptus saligna. Ciência Florestal, v. 7, n. 1, p. 41-63, 1997. https://doi.org/10.5902/19805098338.

Finney, K. N. et al. Fuel pelletization with a binder: Part I - Identification of a suitable binder for spent mushroom compost: coal tailing pellets. Energy and Fuels, v. 23, n. 6, p. 3195-3202, 2009. https://doi.org/10.1021/ef900020k.

Flora do Brasil. Joannesia in Flora of Brazil Species List. Rio de Janeiro: Botanical Garden of Rio de Janeiro, 2020. Available from: http://floradobrasil.jbrj.gov.br/s. Access on: Apr. 20, 2020.

Gilvari, H. et al. Quality parameters relevant for densification of bio-materials: Measuring methods and affecting factors: a review. Biomass and Bioenergy, v. 120, p. 117-134, 2019. https://doi.org/10.1016/j.biombioe.2018.11.013.

Glasser, W. G. Classification of lignin according to chemical and molecular structure. ACS Symposium Series, v. 742, p. 216-238, 1999. https://doi.org/10.1021/bk-2000-0742.ch009.

Gomes, F. J. B. et al. Through characterization of Brazilian new generation of eucalypt clones and grass for pulp production. International Journal of Forestry, v. 2015, 814071, p. 1-10, 2015. https://doi.org/10.1155/2015/814071.

Gomide, J. L. et al. Technological characterization of the new generation of Eucalyptus clones in Brazil for kraft pulp production. Revista Árvore, v. 29, n. 1, p. 129-137, 2005. https://doi.org/10.1590/S0100-67622005000100014.

Gouvêa, A. F. G. et al. Estudo da adição da lignina kraft nas propriedades mecânicas dos briquetes de resíduos da indústria moveleira. Ciência Florestal, v. 27, n. 3, p. 1029-1036, 2017. https://doi.org/10.5902/1980509828678.

Han, K. et al. The study of sulphur retention characteristics of biomass briquettes during combustion. Energy, v. 186, 115788, p. 1-12, 2019. https://doi.org/10.1016/j.energy.2019.07.118.

ISO. International Organization for Standardization. ISO 17225-2: solid biofuels: fuel specifications and classes. Part 2: graded wood péletes. Switzerland, 2014.

Jittabut, P. Physical and thermal properties of briquette fuels from rice straw and sugarcane leaves by mixing molasses. Energy Procedia, v. 79, p. 2-9, 2015. https://doi.org 10.1016/j.egypro.2015.11.452.

Kaliyan, K. & Morey, R. V. Factors affecting strength and durability of densified biomass products. Biomass Bioenergy, v. 33, n. 3, p. 337-359, 2009. https://doi.org/10.1016/j.biombioe.2008.08.005.

Karunanithy, C. et al. Physiochemical characterization of briquettes made from different feedstocks. Biotechnology Research International, v. 2012, 165202, p. 1-12, 2012. https://doi.org/10.1155/2012/165202.

Kers, J. et al. Determination of physical, mechanical and burning characteristics of polymeric waste material briquettes. Estonian Journal of Engineering, v. 16, n. 4, p. 307-316, 2010. https://doi.org/10.3176/eng.2010.4.06.

Kubo, S. & Kadla, J. F. Poly (Ethylene Oxide)/Organosolv lignin blends: relationship between thermal properties, chemical structure, and blend behavior. Macromolecules, v. 37, n. 18, p. 6904-6911, 2004. https://doi.org/10.1021/ma0490552.

Kun, D. & Pukánszky, B. Polymer/Lignin blends: interactions, properties, applications. European Polymer Journal, v. 93, p. 618-641, 2017. http://dx.doi.org/10.1016/j.eurpolymj.2017.04.035.

Leokaoke, N. T. et al. Manufacturing and testing of briquettes from inertinite-rich low-grade coal fines using various binders. The Journal of the Southern African Institute of Mining and Metallurgy, v. 118, p. 83-88, 2018. http://dx.doi.org/10.17159/2411-9717/2018/v118n1a10.

Li, R. X. et al. A lignin-epoxy resin derived from biomass as an alternative to formaldehyde-based wood adhesives. Green Chemistry, v. 20, n. 7, p. 1459-1466, 2018. https://doi.org/10.1039/C7GC03026F.

Lin, S. Y. & Dence, C. W. Methods in lignin chemistry. Germany: Springer Verlag, 1992.

Lumadue, M. R. et al. Lignin as both fuel and fusing binder in briquetted anthracite fines for foundry coke substitute. Fuel, v. 97, p. 869-875, 2012. http://dx.doi.org/10.1016/j.fuel.2012.02.061.

Luo, H. & Abu-Omar, M. M. Chemicals from lignin. In: Abraham, M. A. (ed.). Encyclopedia of sustainable technologies. [Amsterdam]: Elsevier, 2017. p. 573- 585.

Lurii, V. G. Comparative results of the combustion of lignin briquettes and black coal. Solid Fuel Chemistry, v. 42, p. 342-348, 2008. https://doi.org/10.3103/S0361521908060037

Macfarlane, A. L. et al. Bio-based chemicals from bio-refining: lignin conversion and utilization. In: Waldron, K. (ed.). Advances in biorefineries: biomass and waste supply chain exploitation. Amsterdam: Elsevier Science, 2014. p. 659-692. (Woodhead Publishing Series in Energy).

Maia, B. G. O. et al. Production and Characterization of fuel briquettes from banana leaves waste. Chemical Engineering Transactions, v. 37, p. 439-444, 2014. https://doi.org/10.3303/CET1437074.

Mankowski, J. & Kolodziej, J. Increasing heat of combustion of briquettes made of hemp shives. In: Proceedings of 2008 International Conference on Flax and Other Bast Plants. Saskatoon, FAO/ESCORENA, 2008. p. 344-352.

Marsk, G. Biofuels: aviation alternative? Renewable Energy Focus, v. 9, n. 4, p. 48-51, 2008. https://doi.org/10.1016/S1471-0846(08)70138-0.

Martino, D. C. et al. Factors affecting bleachability of eucalypt pulp. BioResources, v. 8, n. 1, p. 1186-1198, 2013. https://doi.org/10.15376/biores.8.1.1186-1198.

Melati, R. B. et al. Key factors affecting the recalcitrance and conversion process of biomass. BioEnergy Research, v. 12, n. 1, p. 1-20, 2019. https://doi.org/10.1007/s12155-018-9941-0.

Mendes, L. M. et al. Pinus spp. na produção de painéis de partículas orientadas (OSB). Ciência Florestal, v. 12, n. 2, p. 135-145, 2002. https://doi.org/10.5902/198050981688.

Mendu, V. et al. Global bioenergy potential from high-lignin agricultural residue. Proceedings of the National Academy of Sciences of United States of America, v. 109, n. 10, p. 4014-4019, 2012. https://doi.org/10.1073/pnas.1112757109.

Modiri, N. T. An evaluation of coal briquettes using various binders for application in fixedbed gasification. 2016. 106 f. Dissertation (Magister in Chemical Engineering) - North-West University, South Africa.

Mokfienski, A. et al. Relative importance of wood density and carbohydrate content on pulping yield and product quality. Ciência Florestal, v. 18, n. 3, p. 401-413, 2008. https://doi.org/10.5902/19805098451.

Morais, P. H. D. et al. Influence of clone harvesting age of Eucalyptus grandis and hybrids of Eucalyptus grandis X Eucalyptus urophylla in the wood chemical composition and in kraft pulpability. Ciência Florestal, v. 27, n. 1, p. 237-248, 2017. https://doi.org/10.5902/1980509826462.

Moreno, A. I. et al. Physical and chemical evaluation of furniture waste briquettes. Waste Management, v. 49, p. 245-252, 2016. https://doi.org/10.1016/S1471-0846(08)70138-0.

Ndibewu, P. P. & Tchieta, P. G. Utilisation of lignins in the bioeconomy: projections on ionic liquids and molecularly imprinted polymers for selective separation and recovery of base metals and gold. In: Poletto, M. (ed.). Lignin: trends and applications [United Kingdom]: InTechOpen, 2018. p. 233- 270.

Neves, T. A. et al. Evaluation of Eucalyptus clones in different places seeking to the production of vegetal charcoal. Pesquisa Florestal Brasileira, v. 31, n. 68, p. 319-330, 2011. https://doi.org/10.4336/2011.pfb.31.68.319.

Ngusale, G. K. et al. Briquette making in Kenya: Nairobi and peri-urban areas. Renewable and Sustainable Energy Reviews, v. 40, p. 749-759, 2014. http://dx.doi.org/10.1016/j.rser.2014.07.206.

Nielsen, N. P. K. et al. Importance of temperature, moisture content, and species for the conversion process of wood residues into fuel pellets. Wood and Fiber Science, v. 41, n. 4, p. 414-425, 2009.

Obernberger, I. & Thek, G. Physical characterisation and chemical composition of densified biomass fuels with regard to their combustion behaviour. Biomass and Bioenergy, v. 27, n. 6, p. 653-669, 2004. https://doi.org/10.1016/j.biombioe.2003.07.006.

Okuda, N. et al. Chemical changes of kenaf core binderless boards during hot pressing (II): effects on the binderless board properties. Journal of Wood Science, v. 52, p. 249-254, 2006. https://doi.org/10.1007/s10086-005-0744-5.

Olugbade, T. et al. Influence of binders on combustion properties of biomass briquettes: a recent review. BioEnergy Research, v. 12, p. 241-259, 2019. https://doi.org/10.1007/s12155-019-09973-w.

Onukak, I. E. et al. production and characterization of biomass briquettes from tannery solid waste. Recycling, v. 2, n. 17, p. 1-19, 2017. https://doi.org/10.3390/recycling2040017.

ONORM. Ostrreiches Normunds Institut. ONORM M 7135: compressed wood or compressed bark in natural state: pellets and briquettes: requirements and test specifications. Vienna, 2000.

PNNL. Pacific Northern National Laboratory. Top value added chemicals from biomass. Springfield, 2007. v. 2.

Pan, X. et al. Effect of acetyl groups on enzymatic hydrolysis of cellulosic substrates. Holzforschung, v. 60, n. 4, p. 398-401, 2006. https://doi.org/10.1515/HF.2006.062.

Paula, L. E. R. et al. Characterization of residues from plant biomass for use in energy generation. Cerne, v. 17, n. 2, p. 237-246, 2011a. https://doi.org/10.1590/S0104-77602011000200012.

Paula, L. E. R. et al. Production and evaluation of lignocellulosic residue briquettes. Pesquisa Florestal Brasileira, v. 31, n. 66, p. 103-112, 2011b. https://doi.org/10.4336/2011.pfb.31.66.103.

Pereira, B. L. C. et al. Influence of adding kraft lignin in eucalyptus pellets properties. Floresta, v. 46, n. 2, p. 235-242, 2016. https://doi.org/10.5380/rf.v46i2.44936.

Pereira, B. L. C. et al. Influence of chemical composition of eucalyptus wood on gravimetric yield and charcoal properties. Bioresources, v. 8, n. 3, p. 4574-4592, 2013. https://doi.org/10.15376/biores.8.3.4574-4592.

Protásio, T. P. et al. Classificação de clones de Eucalyptus por meio da relaçãosiringil/guaiacil e das características de crescimento para uso energético. Scientia Forestalis, v. 45, n. 114, p. 32-341, 2017. https://dx.doi.org/10.18671/scifor.v45n114.09.

Protásio, T. P. et al. Compaction of plant biomass for solid biofuels production. Pesquisa Florestal Brasileira, v. 31, n. 68, p. 273-283, 2011a. https://doi.org/10.4336/2011.pfb.31.66.113.

Protásio, T. P. et al. Relation between higher heating value and elemental and mineral biomass plant components. Pesquisa Florestal Brasileira, v. 31, n. 66, p. 113-122, 2011b. https://doi.org/10.4336/2011.pfb.31.66.113.

Quirino, W. F. Briquetting of lignocellulosic waste. Brasília, DF, IBAMA, 1991.

Richards, S. R. Physical testing of fuel briquettes. Fuel Processing Technology, v. 25, n. 2, p. 89-100, 1990. https://doi.org/10.1021/ac50043a036.

Rolim, S. G. & Piotto, D. Silviculture and wood properties of natives species of the Atlantic Forest of Brazil. Belo Horizonte: Rupestre, 2019.

Scandinavian Pulp, Paper and Board Testing Committee. Scan Test Methods. Stockholm, Sweden, 2009.

Scott, R. W. Colorimetric Determination of hexuronic acids in plant materials. Analytical Chemistry, v. 51, n. 7, p. 936-941, 1979. https://doi.org/10.1021/ac50043a036.

Scown, C. D. et al. Role of lignin in reducing life-cycle carbon emissions, water use, and cost for United States Cellulosic Biofuels. Environmental Science & Technology, v. 48, n. 15, p. 8446-8455, 2014. https://doi.org/10.1021/es5012753.

Sette Junior, C. R. et al. Characterization of biomass, charcoal and briquette of Phyllostachys aurea Carr. ex A. & C. Rivière. Scientia Forestalis, v. 45, n. 116, p. 619-628, 2017. https://dx.doi.org/10.18671/scifor.v45n116.03.

Shapiro, S. S. & Wilk, M. B. An analysis of variance test for normality (complete sample). Biometrika, v. 52, n. 3-4, p. 591-611, 1965. https://doi.org/10.2307/2333709

Shyamalee, D. et al. Evaluation of different binding materials in forming biomass briquettes with saw dust. International Journal of Scientific and Research Publications, v. 5, n. 3, p. 1-8, 2015.

Silva, C. E. S. et al. Recovering wood waste to produce briquettes enriched with commercial kraft lignin. Natural Resources, v. 12, n. 5, p. 181-195, 2021. https://doi.org/10.4236/nr.2021.125013.

Silva, D. A. et al. Elemental chemical composition of forest biomass at different ages for energy purposes. Floresta e Ambiente, v. 26, n. 4, p. 1-11, 2019. https://doi.org/10.1590/2179-8087.020116.

Simetti, R. et al. Wood quality of five Eucalyptus species planted in Rio Grande do Sul, Brazil for charcoal production. Journal of Tropical Forest Science, v. 30, n. 2, p. 175-181, 2018. https://doi.org/10.26525/jtfs2018.30.2.175181.

Soares, V. C. et al. Correlações entre as propriedades da madeira e do carvão vegetal de híbridos de eucalipto. Revista Árvore, v. 38, n. 3, p. 543-549, 2014. https://doi.org/10.1590/S0100-67622014000300017.

Solar, R. et al. Simple semi-micro method for the determination of o-acetyl groups in wood and related materials. Nordic Pulp Paper Research Journal, v. 2, n. 4, p. 139-141, 1987. https://doi.org/10.3183/npprj-1987-02-04-p139-141.

Stelte, W. et al. Fuel pellets from wheat straw: the effect of lignin glass transition and surface Waxes on Pelletizing Properties. BioEnergy Research, v. 5, n. 2, p. 450-458, 2012. https://doi.org/10.1007/s12155-011-9169-8.

TAPPI. Technical Association of Pulp and Paper Industry. Standard Method T257 cm-02: sampling and preparing wood for analysis. Atlanta, 2012.

TAPPI. Technical Association of Pulp and Paper Industry. Standard Method T211 om-93: ash in wood, pulp, paper and paperboard: combustion at 525°C. Atlanta, 2002.

TAPPI. Technical Association of Pulp and Paper Industry. Standard Method T264 om- 97: solvent extractives of wood and pulp. Atlanta, 1997.

TAPPI. Technical Association of Pulp and Paper Industry. Standard Method T222 om- 98: acid-insoluble lignin in wood and pulp. Atlanta, 1998.

TAPPI. Technical Association of Pulp and Paper Industry. Standard Method UM 250: acid-soluble lignin in wood and pulp. Atlanta, 1991.

Teixeira, V. L. et al. Potential of Macauba epicarp (Acrocomia aculeata (Jacq.) Lodd. ex Martius) for briquettes production. Floresta, v. 48, n. 4, p. 563-572, 2018. https://doi.org/10.5380/rf.v48i4.57397.

Tomani, P. The Lignoboost Process. Cellulose Chemistry and Technology, v. 44, n. 1-3, p. 53-58, 2010.

Tomaszewska, J. et al. Products of sugar beet processing as raw materials for chemicals and biodegradable polymers. RSC Advances, v. 8, n. 6, p. 3161-3177, 2018. https://doi.org/10.1039/C7RA12782K.

Trugilho, P. F. et al. Elementary analysis of the wood of Eucalyptus clones. Biomassa & Energia, v. 5, n. 1, p. 53-58, 2012.

Trugilho, P. F. et al. Growing characteristics chemical composition physical and dry mass estimated of wood in young Eucalyptus species and clones. Ciência Rural, v. 45, n. 4, p. 661-666, 2015. https://doi.org/10.1590/0103-8478cr20130625.

Turns, S. R. An introduction to combustion: concepts and applications. 3rd ed. London: McGraw-Hill, 2013. 752 p.

Upton, B. M. & Kasko, A. M. Strategies for the conversion of lignin to high-value polymeric materials: review and perspective.. Chemical Reviews, v. 116, n. 4, p. 2275-2306, 2016. https://doi.org/10.1021/acs.chemrev.5b00345.

Vishtal, A. & Kraslawski, A. Challenges in industrial applications of technical lignins. BioResources, v. 6, n. 3, p. 3547-3568, 2011. https://doi.org/10.15376/biores.6.3.3547-3568.

Vital, B. R. Methods of determining wood density. Viçosa, MG: Universidade Federal de Viçosa, 1984.

Wallis, A. F. A. et al. Chemical analysis of polysaccharides in plantation eucalypt woods and pulps. Australia: CRC Publications Committee, 1996.

Wamukonya, I. & Jenkins, B. Durability and relaxation of sawdust and wheat-straw briquettes as possible fuels for Kenya. Biomass and Bioenergy, v. 8, n. 3, p. 175-179, 1995. https://doi.org/10.1016/0961-9534(95)00016-Z.

Zanuncio, A. J. V. & Colodette, J. L. Teores de lignina e ácidos urônicos na madeira e polpa celulósica de eucalipto. Revista Árvore, v. 35, n. 2, p. 341-347, 2011. https://doi.org/10.1590/S0100-67622011000200018.

Zanuncio, A. J. V. et al. Chemical composition of eucalypt wood with different levels of thinning. Ciência Florestal, v. 23, n. 4, p. 755-760, 2013. https://doi.org/10.5902/1980509812359.

Downloads

Publicado

14-12-2022

Como Citar

SILVA, Carlos Eduardo Silveira da; BATALHA, Larisse Aparecida Ribas; CARVALHO, Alexandre Monteiro de; OLIVEIRA, Vinicius Bohrer Lobosco Gonzaga de; CARVALHO, Ana Márcia Macedo Ladeira; CARNEIRO, Angélica de Cássia Oliveira; GOMES, Fernando José Borges. Avaliação de lignina kraft e resíduos de serraria para produção de briquetes. Pesquisa Florestal Brasileira, [S. l.], v. 42, 2022. DOI: 10.4336/2022.pfb.42e202102186. Disponível em: https://pfb.cnpf.embrapa.br/pfb/index.php/pfb/article/view/2186. Acesso em: 22 dez. 2024.

Edição

Seção

Artigos Científicos

Artigos mais lidos pelo mesmo(s) autor(es)

Artigos Semelhantes

<< < 13 14 15 16 17 18 19 20 21 22 > >> 

Você também pode iniciar uma pesquisa avançada por similaridade para este artigo.