Nitrogen deposition and tree canopy influence on soil C-CO2 efflux

Authors

DOI:

https://doi.org/10.4336/2022.pfb.42e201902068

Keywords:

Fixação de nitrogênio, Microbiota, Respiração basal do solo

Abstract

The increase in atmospheric nitrogen deposition over the years can affect biogeochemical cycling through the action of soil microbiota. The objective of this study was to evaluate the influence of N deposition beyond the tree canopy areas on soil C-CO2 efflux. Four tree species were selected in the open field. For each species, three individuals were selected and the efflux of C-CO2 from the soil under their canopies was evaluated with and without the presence of ammonium nitrate (NH4NO3). They were compared with grass areas (Paspalum notatum Flüggé). The addition of NH4NO3 induced changes in the slope of the straight lines describing the soil C-CO2 efflux to areas under (105%) and outside the trees canopies (70%). The area under Inga laurina canopy was the only one with lower C-CO2 efflux. We concluded that Inorganic N deposition in the state of Rio de Janeiro (9.6 kg N ha-1), intensifies the C-CO2 efflux in the soil and that tree species with bigger canopy areas such as I. laurina provide a reduction of this efflux.

Downloads

Download data is not yet available.

Author Biographies

Wilbert Valkinir Cabreira, Universidade Federal Rural do Rio de Janeiro

http://lattes.cnpq.br/9030661135044020

João Elves da Silva Santana, Universidade Federal Rural do Rio de Janeiro

Ramon Pittizer Moreira, Universidade Federal Rural do Rio de Janeiro

http://lattes.cnpq.br/4594578439906979

Victória Maria Monteiro Mendonça, Universidade Federal Rural do Rio de Janeiro

http://lattes.cnpq.br/3148565462256506

Fabiano de Carvalho Balieiro, Embrapa Solos

http://lattes.cnpq.br/5456817129473536

Marcos Gervasio Pereira, Universidade Federal Rural do Rio de Janeiro

http://lattes.cnpq.br/3657759682534978

References

Alonso, J. K. et al. Aporte de serapilheira em plantio de recomposição florestal em diferentes espaçamentos. Ciência Florestal, v. 25, p. 1-11, 2015. http://dx.doi.org/10.5902/1980509817439.

Clark, C. M. & Tilman, D. Loss of plant species after chronic low-level nitrogen deposition to prairie grasslands. Nature, v. 451, p. 712-715, 2008. http://dx.doi.org/10.1038/nature06503.

Detran-RJ. Departamento de Trânsito do Estado do Rio de Janeiro. Estatística da Frota de veículos do município do Rio de Janeiro. Disponível em: http://detran.rj.gov.br/_estatisticas.veiculos/02.asp. Acesso em: 21 nov. 2019.

Fornara, D. A. & Tilman, D. Soil carbon sequestration in prairie grasslands increased by chronic nitrogen addition. Ecology, v. 93, p. 2030-2036, 2012. http://dx.doi.org/10.1890/12-0292.1.

Forrester, D. I. et al. Mixed-species plantations of Eucalyptus with nitrogen-fixing trees: a rewiew. Forest Ecology and Management, v. 233, p. 211-230, 2006. http://dx.doi.org/10.1016/j.foreco.2006.05.012.

Gao, W. L. et al. Effects of simulated atmospheric nitrogen deposition on inorganic nitrogen content and acidification in a cold-temperate coniferous forest soil. Acta Ecológica Sinica, v. 33, p. 114-121, 2013. http://dx.doi.org/10.1016/j.chnaes.2013.01.008.

Gholz, H. L. et al. Long-term dynamics of pine and hardwood litter in contrasting environments: toward a global model of decomposition. Global Change Biology, v. 6, p. 751-765, 2000. http://dx.doi.org/10.1046/j.1365-2486.2000.00349.x.

IBGE. Instituto Brasileiro de Geografia e Estatística. Panorama das cidades brasileira. Disponível em: https://cidades.ibge.gov.br/brasil/rj/rio-de-janeiro/panorama. Acesso em: 21 nov. 2019.

Jagadamma, S. et al. Substrate quality alters microbial mineralization of added substrate and soil organic carbon. Biogeosciences, v. 11, p. 4451- 4482, 2014. http://dx.doi.org/10.5194/bg-11-4665-2014.

Janssens, I. A. et al. Reduction of forest soil respiration in response to nitrogen deposition. Nature Geoscience, v. 3, p. 315-322, 2010. http://dx.doi.org/10.1038/ngeo844.

Jenkinson, D. S. & Powlson, D. S. The effects of biocidal treatments on metabolism in soil. V. Method for measuring soil biomass. Soil Biology and Biochemistry, v. 8, p. 209-213, 1976. http://dx.doi.org/10.1016/0038-0717(76)90005-5.

Jiang, L. et al. Plant species effects on soil carbon and nitrogen dynamics in a temperate 216 steppe of northern China. Plant and Soil, v. 346, p. 331-347, 2011. http://dx.doi.org/10.1007/s11104-011-0822-y.

Kuang, F. et al., Wet and dry nitrogen deposition in the central Sichuan Basin of China, Atmospheric Environment, v. 143, p. 39-50, 2016. http://dx.doi.org/10.1016/j.atmosenv.2016.08.032.

Lal, R. Challenges and opportunities in soil organic matter research. European Journal of Soil Science, v. 60, p. 158-169, 2009. http://dx.doi.org/10.1111/j.1365-2389.2008.01114.x.

Liu, Q. et al. Temperature sensitivity of soil respiration to nitrogen fertilization: varying effects between growing and non-growing seasons. PLoS One, v. 11, e:0168599, 2014. http://dx.doi.org/10.1371/journal.pone.0168599.

Lopes, A. A. C. et al. Interpretation of microbial soil indicators as a function of crop yield and organic carbon. Soil Science Society of America Journal, v. 77, p. 461-472, 2013. http://dx.doi.org/10.2136/sssaj2012.0191.

Maaroufi, N. I. et al. Anthropogenic nitrogen deposition enhances carbon sequestration in boreal soils. Global Change Biology, v. 21, p. 3169-3180, 2015. http://dx.doi.org/10.1111/gcb.12904.

Mendes, I. C. et al. Bioindicadores de qualidade de solo: dos laboratórios de pesquisa para campo. Cadernos de Ciência e Tecnologia, v. 32, p. 185-203, 2015.

Mendes, I. C. et al. Microbiologia do solo e sustentabilidade de sistemas agrícolas. In: Falieiro, F. G. et al. (ed.). Biotecnologia: estado da arte e aplicações na agropecuária. Brasília, DF: Embrapa, 2011. p. 219-244.

Mendes, R. et al. Efeito do aquecimento global sobre a comunidade microbiana do solo. In: Bettiol, W. et al. (ed.). Aquecimento global e problemas fitossanitários. Brasília, DF: Embrapa, 2017. p. 177-203.

Murphy, M. et al. Linking tree biodiversity to belowground process in a young tropical plantation: Impacts on soil CO2 flux. Forest Ecology and Management, v. 255, p. 2577-2588, 2008. http://dx.doi.org/10.1016/j.foreco.2008.01.034.

Parker, G. G. Throughfall and stemflow in the forest nutrient cycle. Advances in Ecological Reserarch, v. 13, p. 58:120, 1983.

Ramirez, K. S. et al. Consistent effects of nitrogen amendments on soil microbial communities and processes across biomes. Global Change Biology, v. 18, p. 1918-1927, 2012. http://dx.doi.org/10.1111/j.1365-2486.2012.02639.x.

R Development Core Team. R: a language and environment for statistical computing. Vienna: R Foudation for Statistical Computing, 2019. Disponível em: http://www.R-project.org; 2019.

Resh, S. C. et al. Greater soil carbon sequestration under nitrogen-fixing trees compared with Eucalyptus species. Ecosystems, v. 5, p. 217-231, 2002. http://dx.doi.org/10.1007/s10021-001-0067-3.

Ritll, T. F. et al. Negative priming of native soil organic carbon mineralization by oilseed biochars of contrasting quality. European Journal of Soil Science, v. 66, p. 714-721, 2015. https://doi.org/10.1111/ejss.12257.

Rodrigues, R. A. R. et al. Aporte atmosférico de amônio, nitrato e sulfato em área de Floresta Ombrófila Densa Montana na Serra dos Órgãos, RJ. Revista Química Nova, v. 30, 2007. http://dx.doi.org/10.1590/S0100-40422007000800009.

Silva, J. M. et al. Mineralização de vermicompostos estimada pela respiração microbiana. Revista Verde, v. 8, p. 132-135, 2013.

Souza, E. D. et al. Biomassa microbiana do solo em sistema de integração lavoura-pecuária em plantio direto, submetido a intensidades de pastejo. Revista Brasileira de Ciência do Solo, v. 34, p. 79-88, 2010. http://dx.doi.org/10.1590/S0100-06832010000100008.

Souza, P. A. et al. Deposições atmosféricas úmida, seca e total de nitrogênio inorgânico dissolvido no estado do Rio de Janeiro. Revista Virtual de Química, v. 9, p. 2052-2066, 2017. https://doi.org/10.21577/1984-6835.20170122.

Tisdall, J. M. & Oades, J. M. Organic matter and water-stable aggregates in soils. European Journal of Soil Science, v. 33, p. 141-163, 1982. https://doi.org/10.1111/j.1365-2389.1982.tb01755.x.

Wang, Y. et al. Effects of forest regeneration practices on the flux of soil CO2 after clear-cutting in subtropical China. Journal of Environmental Management, v. 212, p. 332-339, 2018. https://doi.org/10.1016/j. jenvman.2018.02.038.

Zagatto, M. R. G. et al. Interactions between mesofauna, microbiological and cheminal soil attributes in pure and intercropped Eucalyptus and Acacia mangium plantations. Forest Ecology and Management, v. 433, p. 240-247, 2019. http://dx.doi.org/10.1016/j.foreco.2018.11.008.

Published

2022-12-14

How to Cite

CABREIRA, Wilbert Valkinir; SANTANA, João Elves da Silva; MOREIRA, Ramon Pittizer; MENDONÇA, Victória Maria Monteiro; BALIEIRO, Fabiano de Carvalho; PEREIRA, Marcos Gervasio. Nitrogen deposition and tree canopy influence on soil C-CO2 efflux. Pesquisa Florestal Brasileira, [S. l.], v. 42, 2022. DOI: 10.4336/2022.pfb.42e201902068. Disponível em: https://pfb.cnpf.embrapa.br/pfb/index.php/pfb/article/view/2068. Acesso em: 20 may. 2024.

Issue

Section

Articles

Most read articles by the same author(s)

Similar Articles

<< < 2 3 4 5 6 7 8 9 10 11 > >> 

You may also start an advanced similarity search for this article.